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About this guidebook

Holo-omics overview. Modified from Nyholm et al. 2020 [Nyholm et al., 2020]

The practical guide to holo-omics is a compilation of methodological proce-
dures to generate, analyse and integrate holo-omic data, i.e., multi-omic data
jointly generated from hosts and associated microbial communities [Nyholm
et al., 2020, Limborg et al., 2018]. This guide extends the contents of the
article “A practical introduction to holo-omics”, which aims at guiding
researchers to the main critical steps and decision points to perform holo-omic
studies. While the article focuses on discussing pros and cons of using multiple
available options, the aim of this guide is to compile protocols and pipelines
to be implemented by researchers. The practical guide to holo-omics is
presented in two formats:

• Website (http://www.holo-omics.science/)
• PDF document (http://www.holo-omics.science/holo_omics_guidebook.

pdf)
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The guidebook is meant to be a live resource under continuous development,
whose contents are updated, replaced and improved as technology and knowl-
edge advances. So, changes are to be expected. However, frozen PDF versions
will be released periodically to ensure traceability of the contents.

This guide is presented as a final output of the H2020 project HoloFood. More
information about this EU Innovation Action that ran between 2019 and 2023
can be found in the HoloFood Website and the CORDIS website.

Contents
• Introduction: general information about holo-omics, employed data

types and study design considerations.
• Laboratory procedures: methods and procedures for generating raw

omic data of hosts and microbial communities.
• Bioinformatic procedures: methods and procedures for processing raw

omic data into quantitative datasets to be analysed through statistics.
• Statistical procedures: methods and procedures for analysing and in-

tegrating holo-omic data.

Protocols, exercises and tutorials
This guide contains example data and bits of code (mostly shell and R) to
reproduce data generation and analysis procedures. Code boxes look like the
following:
shao4d_perm <- shao4d %>%

tax_transform("identity", rank = "genus") %>%
dist_calc("aitchison") %>%
dist_permanova(

variables = c("breed", "sex", "number_reads"),
n_perms = 99, # you should use more permutations in your real analyses!
n_processes = 1

)
#> Dropping samples with missings: 15
#> 2022-11-24 01:15:20 - Starting PERMANOVA with 99 perms with 1 processes
#> 2022-11-24 01:15:21 - Finished PERMANOVA

Data sets
The data sets employed in the guidebook are derived from chicken and salmon
intestinal samples produced in the H2020 project HoloFood. All the raw omic
data, as well as relevant metadata and complementary information can be found
in the HoloFood Data Portal.

http://www.holofood.eu
https://cordis.europa.eu/project/id/817729
https://www.holofooddata.org
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Chapter 1

Introduction to holo-omics

Why do we need holo-omics?
Every multicellular organism is a host ‘environment’ for which microbes pass
through, persist, replicate, and/or influence the host phenotype. Evidence, col-
lected from rainforest swamps to research labs, and from farm stables to patient
bedsides, has made it clear that no fauna or flora live alone. Although each
have their own peculiar characteristics, animals and plants are incontrovertible
assemblages of multiple lifeforms. They compositionally form holobionts with
their diverse microbial associates, whether they are transient or stably present
[Theis et al., 2016]. Holobionts can thus change in time and space, and the col-
lective gene catalog of a holobiont in turn forms a hologenome, which can yield
variation in phenotypes with fitness, performance, or disease consequences. The
prefix “holo” derives from the Greek word holos for entire or whole. Holobiont
and hologenome are thus structural terms that help us view and study biological
systems in an integrated community context, that are subject to diverse ecolog-
ical and evolutionary forces with harmful, helpful, or harmless consequences
[Rosenberg and Zilber-Rosenberg, 2013]. The terms also recognize that hosts
often outsource or intertwine metabolism to stable or transient microbial asso-
ciates, and that hosts have evolved a gradient of dependencies and antagonisms
with microorganisms in or on their surfaces and surroundings across the plant
and animalia kingdoms.

What is holo-omics?
Holo-omics refers to the methodological approach that jointly generates and
analyses multi-omic data from hosts and associated microbial communities [Ny-
holm et al., 2020]. Holo-omics leverage current knowledge and methods in the
fields of molecular biology and microbiology into a novel framework integrating
molecular data including genomes, transcriptomes, epigenomes, proteomes, and
metabolomes for analyzing host organisms and their gut microbiota as inter-
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connected and coregulated systems. The advantage of holo-omics is that it is
supposed to overcome the limited functional insights of current analytical strate-
gies by simultaneously considering the holobiont at multiple molecular levels.
This involves deciphering interactions between not only the host genome but
also its epigenome and transcriptome, as well as its microbial metagenome and
metatranscriptome. Studies would ideally also incorporate analyses of the asso-
ciated proteomes and metabolomes, and metaproteomes and metametabolomes,
to fully recover the functional pathways controlling the observable phenotype
of a host organism. Successful integration of such data into a holo-omic frame-
work will reveal mechanisms such as how host genomes regulate the composition
of the microbial community, or, conversely, how specific microbes interact to
control host gene expression patterns. Finally, the holo-omic approach to study
host-microbiota interactions relies on three major assumptions of the study sys-
tem:

1. Host-associated microorganisms interact not only with each other but also
with their host [Fischer et al., 2017].

2. These interactions affect, either positively or negatively, central biological
processes of hosts and microorganisms [Wu and Wu, 2012].

3. The interplay can be traced using biomolecular tools.

Contents of this section were created by Antton Alberdi and Morten Limborg.

1.1 Omic layers

Nucleic acid sequencing and mass spectrometry technologies that enable track-
ing the biomolecular pathways linking host and microbial genomic sequences
with biomolecular phenotypes by generating (meta)transcriptomes, (meta) pro-
teomes, and (meta)metabolomes. The same technologies also enable epige-
nomic and exposomic profiling, which can further contribute to disentangling
the biochemical associations between host-microbiota-environment interactions
and their effect on host phenotypes.
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Overview of omic layers. Modified from Limborg et al. 2018 [Limborg et al.,
2018].

In this workbook we consider seven omic layers that require specific data gener-
ation and analysis strategies before integrating them into multi-omic statistical
models:

• Nucleic acid sequencing-based
– Host genomics - HG
– Host transcriptomics - HT
– Microbial metagenomics - MG
– Microbial metatranscriptomics - MT

• Mass spectrometry-based
– Host proteomics - HP
– Microbial metaproteomics - MP
– (Meta)metabolomics - ME

Acknowledging the distinct biological and structural characteristics of these
seven omic layers is essential to design experiments and analytical pipelines
for better solving the complex puzzle of host-microbiota interactions.

Host genomics (HG)
Host genomics refers to the study of an organism’s genetic information (its
genome) and how it relates to that organism’s traits and characteristics. In the
case of host genomics, we are specifically looking at the genetic information of a
host organism, such as a human or an animal, and how that genetic information
can influence things like susceptibility to certain diseases, response to treatments,
and traits related to its microbiome composition and function.
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Host transcriptomics (HT)
Host transcriptomics refers to the study of the full set of RNA molecules pro-
duced by an organism’s cells (known as the transcriptome), and how it relates
to that organism’s traits and characteristics. In the case of host transcriptomics,
we are specifically looking at the RNA molecules produced by the cells of a host
organism, such as a human or an animal, and how those RNA molecules can
influence things like gene expression, protein production, and how this affects
the host’s associated microbiome.

Microbial metagenomics (MG)
Microbial metagenomics is the study of genetic material from a mixed com-
munity of microorganisms, without the need to isolate and culture individual
organisms. This approach involves extracting DNA from an environmental sam-
ple, including e.g. from the intestinal environment of a host organism, and se-
quencing it to obtain a snapshot of the genetic diversity and potential functions
of the microbial community present in that sample. By analysing the genetic
information obtained through metagenomics, researchers can gain insights into
the metabolic capabilities, ecological roles, and evolutionary relationships of the
microorganisms living in a particular environment.

Microbial metatranscriptomics (MT)
Microbial metatranscriptomics is the study of all the genetic material expressed
as RNA transcripts by a community of microorganisms living in a particular
environment. This approach allows researchers to understand which genes are
active and which metabolic pathways are being used by the microorganisms
in a specific ecosystem. Essentially, it involves analyzing the RNA molecules
produced by the microorganisms in a sample to gain insight into their activities
and behaviors.

Host proteomics (HP)
Host proteomics is the study of all the proteins produced by a specific host
organism in response to various stimuli, including disease or infection. Proteins
are the workhorses of the body and perform many important functions, such
as regulating cell growth, repairing damaged tissues, and fighting infections.
Proteomics techniques involve analysing the entire set of proteins, or proteome,
of a particular organism or tissue sample, to understand how they are produced,
modified, and interact with each other. The most popular method to generate
proteomics data today is mass spectrometry which involves ionizing protein
samples and analyzing the resulting ions based on their mass-to-charge ratio to
identify the protein and its modifications.
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Microbial metaproteomics (MP)
Microbial metaproteomics is the large-scale study of all the proteins produced
by a community of microorganisms living in a particular environment such as a
host organism. This approach involves extracting and analysing proteins from
a mixed microbial sample, without the need to isolate and culture individual
microorganisms. By identifying and quantifying the proteins present in the
sample, microbial metaproteomics can provide insights into the functional roles
and metabolic activities of the microorganisms in the community, as well as
their interactions with each other and with their environment. These data are
also often generated using mass spectrometry methods as described for host
proteomics above.

(Meta)metabolomics (ME)
Host as well as Meta-metabolomics is the study of all the small molecules, or
metabolites, produced by an organism and/or microbial community under differ-
ent physiological conditions. These metabolites include molecules such as sugars,
amino acids, and lipids, which are the building blocks and energy sources for
cells. Metabolomics techniques involve the identification and quantification of
these molecules using advanced analytical methods, such as mass spectrometry.
By analysing the metabolic profile of an organism and/or microbial commu-
nity, researchers can gain insights into the biochemical pathways and metabolic
networks that regulate various physiological processes in e.g. the intestinal en-
vironment of animals.

Contents of this section were created by Morten Limborg.
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Chapter 2

Study design considerations

The contents of this section have been extracted and modified from the arti-
cle Disentangling host–microbiota complexity through hologenomics published
in Nature Reviews Genetics in 2022 by the authors of the Holo-omics
Workbook.

Holo-omic approaches can be used to understand how the combined features of
hosts and microorganisms shape biological processes relevant for hosts (such as
adaptation), for microorganisms (such as meta-community dynamics) or both
[Alberdi et al., 2022].

Depending on the aims and features of the study system, holo-omics can be
implemented using different study designs, model systems and techniques. This
landscape of possibilities is shaped around five essential questions that need
to be considered when designing and interpreting hologenomic studies, which
relate to five core topics:

1. Hologenomic complexity
2. Control of variables
3. Molecular resolution
4. Spatiotemporal factors
5. Explanatory and response variables

19
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2.1 Hologenomic complexity

The contents of this section have been extracted and modified from the arti-
cle Disentangling host–microbiota complexity through hologenomics published
in Nature Reviews Genetics in 2022 by the authors of the Holo-omics
Workbook.

Hologenomic complexity can be broadly defined as the amount of information
relevant to the study that the biological system under analysis contains and it
can be decomposed into three major elements: host genomic, microbial metage-
nomic and environmental complexity [Alberdi et al., 2022]. Within each of these
elements, two sources of complexity can be defined: the intrinsic complexity of
the system under study, including host genome size and number of bacterial
genomes, and the complexity introduced by the degree of difference between
the organisms under comparison such as gene expression differences versus dis-
tinct genomes.

https://www.nature.com/articles/s41576-021-00421-0
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Decomposition of hologenomic complexity. (a-c) The design and inter-
pretation of hologenomic studies depend on the host genomic (part a), microbial
metagenomic (part b) and environmental (part c) complexity of the system un-
der study. Within each axis of complexity, two types of gradients can be defined
based on whether the features are intrinsic to the system or introduced by the
researcher through the selection of groups under comparison. (d) Six examples
of study systems with different levels of genomic, metagenomic and environmen-
tal complexity. (e) Three-dimensional representation of the complexity of the
examples. The area of the plain represents the combined host genomic and mi-
crobial metagenomic complexity of the system, while the height represents the
environmental complexity. The combined three-dimensional volume represents
the overall hologenomic complexity of the system. HMP: Human Microbiome
Project.
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2.2 Control of variables
The contents of this section have been extracted and modified from the arti-
cle Disentangling host–microbiota complexity through hologenomics published
in Nature Reviews Genetics in 2022 by the authors of the Holo-omics
Workbook.

Controlling the complexity of hologenomic variables is essential for addressing
specific research questions. Broadly speaking, the more detailed and mech-
anistic the question under study, the greater the required control. For in-
stance, research on specific biomolecular processes using laboratory models will
require a higher level of control than studying biogeographical patterns of host–
microbiota interactions in wild organisms. The control of hologenomic variables
can be achieved through a number of strategies.

2.2.1 Controlling host genomes
The control over host genomic complexity largely depends on the model organ-
isms studied and the technical approaches employed. In laboratory organisms
that can reproduce asexually, such as water fleas (Daphnia, Crustacea) and
Lamiaceae plants, absolute control over host genotypes can be achieved by using
clonal organisms [Mushegian et al., 2019]. When clones cannot be used, inbred
laboratory animals can provide a high level of genomic homogeneity. The use
of groups of genetically homogeneous hosts allows the effects of contrasting en-
vironmental conditions or specific microbial comunities to be compared. Clonal
and inbred models also enable the effects of a specific host genetic factor to be
studied in a controlled genomic background through the application of targeted
techniques for modulating gene expression (such as RNA-mediated interference)
or for genomic engineering (such as CRISPR–Cas9). Working with humans and
wild organisms does not enable such a degree of control over the genotypes stud-
ied unless in vitro models, such as organ-on-a-chip co-cultures of animal tissues
and microbial communities, are generated62. When this level of control is not
possible, coarse control over host genotypes can be achieved through contrast-
ing animals from different populations or from closely related species63, while
greater control can be achieved through comparing individuals across different
degrees of kinship, such as monozygotic versus dizygotic twins38, and family
members to other individuals64.

2.2.2 Controlling microbial metagenomes
Control over microbial metagenomic complexity is usually achieved through
modulating microbial communities. Some strategies, such as modification of
dietary regimes or the administration of microbiota-targeted additives or pre-
biotics, aim to modify microbial ecosystems by changing nutrient availability.
However, unless compounds that match unique enzymatic capabilities of specific
microorganisms are used, it is difficult to accurately modulate the microbiota

https://www.nature.com/articles/s41576-021-00421-0


2.3. MOLECULAR RESOLUTION 23

owing to the complexity of ecological relationships among microorganisms. Al-
ternative approaches to modify microbial communities include inoculation of
target bacteria (such as probiotics) and faecal microbiota transplantation. The
efficacy and accuracy of these methods is also variable; there is no guarantee that
inoculated bacteria will establish or modulate the microbiota, while transplanta-
tion does not enable accurate control over the microbial community introduced
or the secondary elements that are transplanted along with bacteria. These
issues complicate interpretation of results; for example, bacteriophages trans-
ferred alongside bacteria may severely impact the gut microbiota composition.
A higher level of control could potentially be achieved through transplanting
synthetic microbial communities. While this approach has been successfully im-
plemented in diverse in vitro setups the complexity of microbial communities
still hinders its efficient use as a routine scientific procedure in live animals.

2.2.3 Controlling the environment
In most laboratory studies, environmental complexity is reduced so that no, or
very few, environmental parameters (usually only experimental treatments) vary
among groups and subjects. Climate chambers and aquaria enable experiments
by providing absolute control of abiotic conditions, such as light/dark cycles,
humidity and temperature variations. Outdoor common garden experiments do
not provide full control over environmental factors, but they ensure the effect on
the systems being compared is identical. Some natural systems can also provide
special conditions that enable environmental features to be controlled, such as
cuckoo nestlings that are bred by other birds or salmon populations that breed
in the same rivers in alternating years. Research on wild organisms usually
incorporates more complex and dynamic environmental conditions. When con-
trolling them is not possible, collection of relevant environmental metadata to
be incorporated as covariates in the statistical analyses is useful. A century of
ecological research has revealed the advantages of each of these approaches. On
the one extreme, laboratory microcosms allow the most reductive control. On
the other extreme, studies in the macrocosm of the real world provide perspec-
tive on emergent properties of natural ecosystems that cannot be anticipated
solely based on microcosms.

2.3 Molecular resolution
The contents of this section have been extracted and modified from the arti-
cle Disentangling host–microbiota complexity through hologenomics published
in Nature Reviews Genetics in 2022 by the authors of the Holo-omics
Workbook.

The complexity of a study system is not only determined by its inherent prop-
erties and study design, but also the techniques and procedures employed to
analyse it. Researchers can decide how much a system is simplified by altering

https://www.nature.com/articles/s41576-021-00421-0
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the resolution of the hologenomic features under study; in essence, zooming in
or zooming out.

2.3.1 Resolution of host genotypes
In host-microbiota studies, host genotypes can be defined at different levels, in-
cluding species, breeds, populations, strains, sex or individuals. Genotypes can
be defined as categorical variables, without analysing the differences between
them, or can be studied in more detail through considering their actual genetic
content and establishing correlations among them. When using an evolutionary
perspective, phylogenetic relationships between genotypes are established based
on phylogenomic markers, which usually vary above population and species level,
but not among individuals. This implies that genomic variability among the in-
dividuals included within each genotype is overlooked. Studying the effect of
interindividual genomic variability on host-microbiota systems, such as identify-
ing candidate host genomic variants associated with microbial features, requires
a higher level of resolution. This is achieved through defining genotypes at the
individual level, and using techniques based on whole genome resequencing that
enable the complexity of host genomes to be screened at a much finer level, so
that differences between the individuals contrasted are not only defined based
on their kinship, but also the functional properties of their genomic variants.
Currently, this approach requires high quality reference genomes from which
high density SNP profiles of individuals can be generated, for example through
SNPchip or resequencing studies. The genomic resolution could be further re-
fined by incorporating structural variants, methylation patterns, or even, we
hypothesise, chromosome 3D folding structure as revealed through techniques
such as Hi-C. In doing so, researchers can identify associations between SNPs or
gene variants and specific microbiota traits, such as the relative abundance of
certain taxa or the enrichment of a given function, and thus identify mechanisms
by which a host exerts control over composition and function of its associated
microbiota

Resolution of microbial metagenotypes
The structure and resolution at which microbial metagenotypes are defined also
affects the complexity of the metagenome under analysis. Metagenotypes can
be defined as arrays of microbial taxa, microbial genes or a combination of both.
The most common approach to define them is to rely on short marker sequences
targeted for metabarcoding purposes, such as the 16S rRNA or the internal
transcribed spacer (ITS). However, these procedures often do not enable reli-
able taxonomic assignment at genus or species level, do not capture strain level
community dynamics, and are prone to generate biased functional inferences,
as bacteria with identical marker genes (particularly those associated with wild
taxa) might carry very different catalogues of genes. Thus, while useful for
estimating microbial diversity and obtaining preliminary insights into function-
ality, targeted sequencing approaches do not provide conclusive evidence about
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the metabolic capabilities of the microbiota, particularly when working with
non-human systems.

By contrast, if appropriate strategies and adequate sequencing depths are em-
ployed, shotgun metagenomics enables bacterial genome sequences to be re-
covered, from which genes can be predicted and annotated to create a gene
catalogue that can define a metagenotype. However, these genes are not ran-
domly distributed, but enclosed within genomes of specific bacteria or other
microorganisms, with a particular combination of genes that shape their expres-
sion and the specific biological features (such as oxygen affinity, reproduction
time, metabolic capacity) that determine their ecology. Hence, a more refined
characterisation of microbial metagenotypes can be achieved through binning
algorithms that enable bacterial genome reconstruction from metagenomic mix-
tures, yielding metagenome-assembled genomes (MAGs). Nevertheless, unless
short-read sequencing is combined with long-read approaches, it is challenging
to capture multi-copy genes such as the 16S rRNA marker gene 103, which is
often employed in metabarcoding studies and therefore represents a useful link
to a large number of existing studies. Machine learning-based solutions to link
16S rRNA marker gene sequences with MAGs are, however, being developed
104. Finally, regardless of the approach used to define the microbial metageno-
type, the complexity of microbial communities will often require dimensionality
reduction to increase statistical power 105,106. This can be achieved by defin-
ing co-abundance clusters, ecological guilds or more complex strategies that also
consider temporal features of microbiota variation, such as compositional tensor
factorisation.

Resolution of envirotypes
Characterisation of environmental factors that affect the host-microbiota sys-
tem under study enable the definition of envirotypes, a term drawn from crop
sciences that is useful for accounting for the environmental factors in the hologe-
nomic context. Any different physical place, or place sampled at different time
points, will be exposed to a different environment, as conditions will seldom
be identical between two spatial and temporal points. Hence, the resolution at
which the composite of environmental factors is considered will define whether
these two environments will be considered different envirotypes or not. For
example, if only considering water temperature, killer whales sampled in the
Arctic and the Antarctic seas experience the same envirotype. However, if the
biotic composition is also considered in the definition of the environment, the
Arctic and the Antarctic will need to be split into two distinct envirotypes, as
some killer whales will have access to penguins while others will not. The same
principle applies to laboratory setups or mesocosm experiments: a temperature
shift of 2-3 ºC might not be considered relevant under some experimental setups,
while it can define different envirotypes under other study designs. Finally, fail-
ure to recognise environmental factors that affect host-microbiota interactions,
and thus define relevant envirotypes, can lead to increased noise and decreased
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capacity to achieve statistical significance.

2.4 Spatiotemporal factors
The contents of this section have been extracted and modified from the arti-
cle Disentangling host–microbiota complexity through hologenomics published
in Nature Reviews Genetics in 2022 by the authors of the Holo-omics
Workbook.

Spatial factors

Spatial resolution. Microbial communities associated with animal and plant
hosts vary not only across coarse body parts, but also at the micro-scale, such
as between the lumen and the intestinal crypts. Thus, the resolution at which
a body site is defined will also determine how a hologenomic system is char-
acterised. For example, the animal gastrointestinal tract can be considered a
single sampling unit, 4-5 units or hundreds of micro-units, depending on the
sampling and data processing strategies employed. Naturally, each level of res-
olution will allow different questions to be addressed and will require the use of
different technologies and analytical approaches.

Temporal factors

Temporal features to be considered include when, how often, and for how long
host-microbiota systems are to be analysed. When a host is first exposed to mi-
crobes with regard to temporal benchmarks (number of days or years) must be
considered, as should the order in which it is exposed to them. Priority effects
relate to how the order of species arrivals in an ecosystem shape the potential
for subsequently arriving taxa to establish themselves. Although originally dis-
cussed at the macroorganismal level in the context of plant communities, the
phenomenon is also relevant for building host-associated microorganism com-
munities, for example as documented in the human gut. In addition, microbial
communities are known to vary daily, seasonally and relative to life-stage pat-
terns. Hence, the extent and frequency of sampling determine which of these
dynamics will be observed or, conversely, missed. Finally, it is important to
consider that the consequences of changes at one time period or life stage may
appear only later in time, thus detection of such effects obviously requires that
the subsequent period is also studied. For example, interventional animal ex-
periments show that when the immune system develops early in life, there is a
window of opportunity where the gut microbiota composition shapes the risk of
developing diseases in the future.

https://www.nature.com/articles/s41576-021-00421-0
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2.5 Explanatory and response variables

The contents of this section have been extracted and modified from the arti-
cle Disentangling host–microbiota complexity through hologenomics published
in Nature Reviews Genetics in 2022 by the authors of the Holo-omics
Workbook.

Host genomic and microbial metagenomic data generated under hologenomic
setups can take on different roles when generating statistical models. While the
environment is most often considered as an explanatory variable (though one
can also study how the hologenome affects the environment), the host genome
and the microbial metagenome are sometimes viewed as explanatory and some-
times as response variables, depending on the aim of the research. In many
cases, directionality is set by the researcher rather than the biological system
itself, as host-microbiota systems contain many bi-directional interactions and
circular processes, which complicate the establishment of causal relationships.
Here, we define three basic models in which the three main variables (genome,
metagenome and environment) are assigned different roles to address different
types of fundamental questions.

Examples of biological processes addressed by the different models of host-
microbiota interactions. a) How does the hologenome shape animal phenotypes?
Only the combination of specific host genomic (G) and microbial metagenomic
(MG) features, probably developed due to a selective force exerted by the pres-
ence of predators (E) enables rough-skinned newts to have skin toxicity, an eco-
logically relevant phenotypic trait (P). b) How do the microbial metagenome
and environment shape host genomic features? SCFA-producing bacteria along
with a fibre-rich diet enhance chromatin accessibility and thus activate immune
gene expression. c) How do the host genome and the environment shape micro-
bial genomic features? Only the combination of a lactase nonpersister genotype
combined with the milk-drinking envirotype generates a microbial metageno-
type characterised by enrichment of Bifidobacterium.

https://www.nature.com/articles/s41576-021-00421-0
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Phenotype as a product of genotype, metagenotype and
envirotype
This is the main model used when hologenomics is conducted to ascertain how
genome-metagenome-environment interactions affect the biological properties
of a host, such as disease susceptibility, performance or fitness. It is an espe-
cially common and relevant model for health, agricultural, and ecological and
evolutionary research 19,125–127. One clear example of a phenotype shaped by
host genomic, microbial metagenomic and environmental factors was recently
reported for rough-skinned newts. The study showed that bacteria on the skin
of the newts produce a deadly neurotoxin from which the newt is protected by
mutations in five host genes that encode the NaV channels normally targeted by
the toxin. Thus, this ‘toxic newt’ phenotype is the result of both host and micro-
bial genes, which likely evolved under the pressure exerted by an environmental
factor, namely the presence of predators.

Genotype expression influenced by metagenotype and en-
virotype
When studying how core host genomic features, which contribute to shaping
phenotypes, are affected by the microbiota, host genomic features become the
response variable. Unlike the microbial metagenome, the genome sequence of
the host organism is not variable, but microorganisms can induce chromatin
remodelling and DNA methylation, and thus modulate the bioactivity of molec-
ular receptors and host gene expression. A well-studied pathway that links the
microbiota with host gene expression involves modulation of the activity of host
histone deacetylases (HDAC) by short chain fatty acids (SCFA) produced by in-
testinal microorganisms. HDACs remove histone lysine acetyl groups, which
leads to chromatin condensation and transcriptional silencing of genes. In-
creased SCFA concentrations inhibit histone deacetylases, thereby enhancing
chromatin accessibility and activating gene expression. A metagenotype with a
higher capacity to produce SCFAs combined with an envirotype characterised
as a fibre-rich diet (required to produce SCFAs), therefore contributes to boost
immune response through activating host immune gene expression.

Metagenotype as a product of genotype and envirotype
This model assumes the inverse causal directionality between the host genome
and microbial metagenome to that described above. Candidate host genes re-
lated to microbiota features can be identified through GWAS in which the
metagenotype (or derived metrics such as diversity or abundance of specific
microbial taxa, genes or metabolic functions) are treated as a phenotypic trait.
For instance, the increased abundance of lactose degrader Bifidobacteria in hu-
mans has been shown to be associated with lactase nonpersister genotype and
consumption of milk (envirotype). Once candidate genes are known, targeted
analyses in which natural or human-controlled genomic variability (such as the
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number of copies of the amylase-encoding gene in humans) can be contrasted un-
der controlled environmental conditions to ascertain the effect on metagenotypes
(such as the abundance of Ruminococcaceae bacteria in the gut microbiota).
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Chapter 3

About fieldwork

Some contents of this section have been extracted and modified from the article
Field and laboratory guidelines for reliable bioinformatic and statistical analy-
sis of bacterial shotgun metagenomic data published in Critical Reviews in
Biotechnology in 2023 by the authors of the Holo-omics Workbook.
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Chapter 4

Sample collection

Sample collection is a nuanced process that necessitates careful consideration
before embarking into the field. Determining what samples to gather, when to
obtain them, and how to procure them are three critical decisions that should
be made in advance to ensure an effective sampling endeavour.

Researchers must bear in mind that due to the intricate and dynamic nature
of microbial communities, any samples acquired may already deviate from their
original state [Probandt et al., 2018]. This discrepancy can be attributed to
temporal shifts, spatial disparities, and distinctions between the sampled sub-
strate and the subject of study. An illustrative instance is the collection of faecal
samples, which is notorious for not perfectly representing the true community
within the lower intestine [Yan et al., 2019].

Furthermore, if faecal samples are sourced from the environment rather than
directly from the host animal, the microbial communities within them may un-
dergo alterations due to shifts in physicochemical parameters (such as oxygen
levels and temperature) caused by exposure to air and sunlight [Fofanov et al.,
2018]. Additionally, colonisation by new bacteria from the surrounding environ-
ment can influence the samples. Hence, it is advisable to obtain faecal samples
directly from the animals or from sterile containers in which animals are tem-
porarily housed, thereby minimising environmental influences.

It is important to acknowledge that samples typically exhibit spatial structure
[Ji et al., 2019]. Consequently, when subsampling is performed, the composition
of the subset will depend on the precise location (down to the micron level) from
which the sample was taken. In cases where acquiring faecal samples from the
environment is unavoidable, biases introduced by exposure can be mitigated
by targeting internal subsamples and avoiding external layers. However, this
approach might introduce its own spatial biases [Griffin et al., 2021].

Dealing with sizeable samples often imposes constraints related to DNA preser-
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vation and extraction methods, limiting the amount of material that can be
processed. As a result, researchers may consider gathering multiple small sub-
samples using either random or structured subsampling strategies. This ap-
proach captures the spatial diversity of the sample, as opposed to relying on
a single large sample. Subsequently, these subsamples could be aggregated to
represent the entire sample or, ideally, processed individually as distinct biolog-
ical replicates. This practice could potentially enhance metagenomic binning
procedures.

Contents of this section were created by Antton Alberdi and Ostaizka Aizpurua.
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Sample preservation

Utilising liquid nitrogen for snap-freezing samples is widely regarded as the
benchmark method for extracting pristine DNA from an unmodified micro-
bial community. Nevertheless, the feasibility of promptly freezing samples
while maintaining an unbroken cold chain isn’t always achievable, especially
during field sampling missions. Consequently, dependable substitutes become
imperative. This necessity has spurred the creation of various preservatives,
enabling samples to be preserved at room temperature over prolonged dura-
tions. Nonetheless, research has unveiled that these preservatives can impart
significant biases during the generation of diverse omic layers [Bjerre et al., 2019,
Pérez-Losada et al. [2016]]. Therefore, maintaining uniformity in the selection of
preservatives is of paramount importance to ensure consistency across analyses.

Preservative HG/MG HT/MT MP ME Reference
Snap frozen Yes Yes Yes Yes [De Spiegeleer et al., 2020]
RNAlater Yes Yes Yes No [van Eijsden et al., 2013]
DNA/RNA Shield Yes Yes No No [Schweighardt et al., 2015]
OMNIgene GUT Yes Yes No No [Wang et al., 2018]
Tris-EDTA Buffer Yes Yes No No [Barra et al., 2015]
Guanidine thiocyanate Yes Yes No No [Weidner et al., 2022]
TRIzol Yes Yes Yes No [Simões et al., 2013]
Protease inhibitors No No Yes No [Ryan and Henehan, 2017]
FTA Cards Yes Yes No Yes [Bolt Botnen et al., 2023]
Methanol No No No Yes [Straughen et al., 2023]
Ammonium bicarbonate No No Yes No Hedges et al. [2013]

Numerous preservatives necessitate removal before extraction, such as ethanol,
NAP buffer, and RNAlater. However, this removal process can inadvertently
eliminate non-pelleting entities, including bacteriophages and other viruses.
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Conversely, certain preservatives also serve as lysis buffers, exemplified by
Zymo’s DNA/RNA Shield. Notably advantageous, these buffers directly par-
ticipate in DNA extraction. Although these preservatives do not stabilise DNA
within cells, they initiate cellular degradation while stabilising DNA in the
matrix. Maintaining the recommended material-to-buffer ratio is imperative
across all these buffers to ensure optimal outcomes. Overloading with biological
material can negate the beneficial effects of the buffers.

Avoiding freeze-thaw cycles is ideal, as they are recognised sources of DNA degra-
dation and variations in microbial community composition, especially when sam-
ples are repetitively thawed [Cuthbertson et al., 2015]. Opting for small aliquots
tailored to the extraction protocol during sample collection, rather than bulk
collection, facilitates thawing only the sample intended for processing. This
practice sidesteps detrimental thaw-freeze cycles and diminishes the risk of cross-
contamination from other samples.

Furthermore, the biological and chemical characteristics of molecules (e.g., DNA,
RNA, proteins, metabolites) used in omic data generation must be acknowl-
edged. Host DNA’s abundance and stability render HG less sensitive. Con-
versely, MG warrants more cautious handling due to potential microbial com-
munity fluctuations post-sampling, unless biochemical reactions are halted. HT
and MT demand even swifter preservation to capture representative gene expres-
sion patterns. Lastly, metabolites exhibit diverse chemical properties, ranging
from stable steroids to highly volatile short-chain fatty acids. Thus, judicious
selection of appropriate preservatives becomes paramount when generating mul-
tiple omic layers. This decision involves determining whether omic data will be
sourced from a single biological sample, necessitating a universal preservative,
or multiple samples, each potentially requiring a distinct preservative.

Importantly, the diverse physicochemical properties of samples mandate that
collection and storage methods validated for one sample type cannot be uni-
versally assumed optimal for others. Therefore, preliminary optimisation tests
are prudent, and methodological consistency emerges as a prerequisite for the
production of dependable omic data.

Contents of this section were created by Antton Alberdi, Ostaizka Aizpurua
and Jacob A Rasmussen.
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Chapter 6

About labwork

General considerations
Although the generation of each omic data layer requires dedicated protocols
to be implemented, there are multiple general considerations that apply to all
laboratory processes. In the following we list three of the most relevant ones.

External contamination

The risk of external contamination is a relevant issue that must be actively
tackled when generating multi-omic data. External contamination refers to any
molecule of interest that unintendedly is added to the sample, and analysed
with the target molecules. As shotgun sequencing entails analysing all available
nucleic acids in a sample, human saliva, skin microbiome, or microbes present
in water and reagents are some of the sources of external contamination. In-
corporating DNA and RNA from these sources can distort the biological signal,
which can lead researchers into incorrect conclusions. The following measures
contribute to minimise external contamination:

• Always wear gloves and work in sterile environments, such as clean laminar
flow cabinets.

• Use filtered pipette tips.
• Separate pre-PCR and post-PCR laboratories.
• Process and sequence blank controls.

Internal cross-contamination

Another common type of contamination is that happening among samples. Dur-
ing the many pipetting actions laboratory protocols entail, is not uncommon to
transfer small amounts of samples to adjacent tubes or wells. This can obvi-
ously distort the sample, and lead researchers into incorrect conclusions. The
following measures contribute to minimise internal cross-contamination:
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• Process all batches in an identical way for errors to be detectable.
• Avoid pipetting from the top of the tube to minimise sprays.
• Process and sequence blank controls.

Batch effects

The last global consideration is to be aware of batch effects and try to minimise
or account for their impact in downstream analyses. Batch effects are almost un-
avoidable in holo-omic data generation, because samples are usually processed in
batches. Each batch can suffer different types of technical biases, including the
aforementioned contamination issues, but also other problems derived from the
use of different reagent stocks, different researchers executing identical proto-
cols in slightly different ways, or storing samples for variable time periods. The
critical measure to minimise the impact of batch effects and account for them
in downstream analysis is to randomise samples. Randomising means randomly
assigning samples from different contrasting groups to the different batches, min-
imising correlation between batches and experimental groups. If this is done,
laboratory batches can be included as covariates in statistical analyses, which
enable accounting and controlling for batch effects in the final results.

Procedures for generating multi-omic data
This chapter contains sections dedicated to each of the omic layers included in
the workbook.

• Nucleic-acid sequencing-based approaches
– DNA/RNA extraction for HG, HT, MG and MT
– Sequencing library preparation for HG and MG
– Sequencing library preparation for HT
– Sequencing library preparation for MT

• Mass spectrometry-based approaches
– Protein extraction for HP and MP
– Metabolite extraction for ME



Chapter 7

DNA/RNA extraction

DNA extraction involves isolating DNA molecules from the rest of organic ma-
terials in the mixture, as well as removing inhibitors such as polysaccharides,
proteins and bile salts, which can affect downstream enzymatic reactions, such
as adaptor ligation or PCR amplification. Hundreds or (probably) thousands of
different protocols and variations exist for extracting and purifying nucleic acids.
Protocols can be classified based on methodological (e.g., chemical vs. physical
DNA/RNA isolation, column-based vs bead-based, commercial vs. open-access).

Sample preprocessing
Bead-beating

Bead-beating is a mechanical disruption method performed before standard
DNA extraction, where ceramic or glass beads are added to a tube containing
microbial samples. Subsequently, moderate to high-speed shaking is applied to
create collisions between the beads and samples. Bead-beating is widely used in
microbial metagenomics studies for bacterial cell lysis, and various bead-beating
protocols have been utilised to extract microbial DNA from stool samples. Liter-
ature has investigated the effects of different bead-beating techniques on down-
stream analyses [Zhang et al., 2021, Fiedorová et al. [2019]].

Freeze-heat shock

Temperature shocks are one of the most damaging processes for tissue, cell
and DNA integrity. While such events are commonly avoided to preserve the
quality of the samples, heat-shocks have been shown to improve nucleic acid
extractions in various contexts. This is because freezing induces crystallisation
of water inside cells which leads to destruction of cytoplasmic structures.
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Tissue digestion

After tissue disaggregation, a typical approach involves treating samples with a
detergent and salt (such as SDS) to rupture cell membranes and sometimes with
enzymes for cellular and organelle disruption and the elimination of impurities.
Proteinase K is a popular choice for DNA isolation from mammalian tissues
and cells, whereas lyticase and lysozyme are enzymes used to break down the
cell walls of yeast and bacteria and are commonly featured in microbial DNA
extraction kits.

Chemical isolation
Once the DNA is released, proteins and other contaminants must be removed.
When using chemical approaches, this is typically done by adding a precipitat-
ing agent like alcohols (e.g., ethanol) or salts (e.g., ammonium acetate). This
process separates DNA and contaminants in different phases, which enables the
contaminants to be removed from the sample, thus purifying the DNA. Purely
chemical procedures for DNA isolation are becoming less common for the chal-
lenges they entail for high-throughput sample processing and automatisation.

Physicochemical isolation
Physicochemical procedures are the most commonly employed strategies for
DNA and RNA isolation. Two main strategies exist, either column-based or
bead-based isolation.

Column-based

The spin column-based nucleic acid purification method is a rapid solid-phase
extraction technique that purifies nucleic acids. The principle underlying this
method is that under specific ionic conditions, nucleic acids bind to the solid-
phase silica. A binding buffer is used to establish the optimal pH or salt con-
centration required for DNA to bind to silica. The sample in the binding buffer
is then transferred to a spin column, which is placed in a centrifuge or attached
to a vacuum. The centrifuge or vacuum forces the solution through a silica
membrane within the spin column, where the nucleic acids bind to the silica
membrane while the rest of the solution flows through. Once the target mate-
rial is bound, the flow-through can be discarded.

The next step involves washing the column by adding a new buffer, which typ-
ically contains alcohol, to maintain binding conditions while removing binding
salts and any remaining contaminants. This process requires several washes,
often with increasing concentrations of ethanol or isopropanol, until the nucleic
acids on the silica membrane are free of contaminants. Finally, elution is the
process of adding an aqueous solution to the column, allowing the hydrophilic
nucleic acid to leave the column and enter the solution. This step can be en-
hanced by altering the salt, pH, time, or temperature. Finally, to collect the
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extract, the column is transferred to a clean microtube prior to a final centrifu-
gation step.

Bead-based

Bead-based nucleic acid extractions are based on the magnetic properties of very
small (20 to 30 nm) iron oxide particles that only display magnetic behaviour
in the presence of an external magnetic field. Several types of magnetic beads
with different binding properties exist, which can be used for DNA and RNA
purification as well as proteins and other biomolecules, depending on their sur-
face coatings and chemistries. For instance, streptavidin-coated magnetic beads
are commonly used for nucleic acid extractions, due to their capacity to bind
biotinylated ligands such as nucleic acids.

First, beads are mixed with the sample along with a binding buffer that provokes
DNA to get attached to the magnetic beads. Subsequently, particles (with
attached DNA) are dragged to an edge of the tube by the magnetic force of
an external magnet, thus immobilising them. While the beads are immobilised,
the rest of the sample is removed. The bead-bound DNA is retained during
the washing steps, and finally released to an aqueous solution when the sample
has been purified. The main advantage offered by bead-based strategies is their
capacity to upscale and automatise, because there is no need for vacuum or
centrifugation.

Available protocols
Hundreds of protocols, both open access and commercial, are currently available
to extract nucleic acids from different types of samples.

Contents of this section were created by Antton Alberdi.
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Chapter 8

Protein/metabolite
extraction

To ensure accurate and reliable analysis, it is crucial to apply cold processing
when dealing with highly volatile subjects such as small metabolites. This ap-
proach helps to minimize any potential biases in the composition. In order
to obtain efficient precipitation, cell lysis techniques such as sonication or ho-
mogenisation of tissue by freezing, grinding, or bead-beating may be necessary.
Additionally, it is important to filter tissue samples to remove any large debris,
and purify the lysate for either high-performance (HP), medium-performance
(MP), or low-performance (ME) analysis.

For ME, a suitable solvent is required for the precipitation of the metabolites,
which should be chosen based on the desired detection spectrum of the metabo-
lites. The polarity of the solvent can influence the target component of the
ME. In contrast, for HP and MP, two main methods are currently used: ace-
tone/TCA precipitation and phenol extraction.

To increase the detection of rare abundant proteins and metabolites, it is neces-
sary to remove highly abundant metabolites or proteins. However, it is crucial to
include pooled quality controls during data acquisition to detect all metabolites
and correct stochastic drift.

Overall, to ensure the high quality of data for further processing, it is important
to apply appropriate techniques for sample preparation and analysis of small
metabolites. Proper purification and removal of contaminants can significantly
improve the accuracy and reliability of results.
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Chapter 9

Sequencing library
preparation

Sequencing library preparation is a crucial step in the process of DNA sequenc-
ing. It involves the conversion of fragmented DNA molecules into a format that
is compatible with the sequencing platform. The goal of library preparation
is to create a collection of DNA fragments, each with sequencing adapters at-
tached, which enables high-throughput sequencing of the DNA molecules. This
process ensures that the genetic information contained in the DNA sample can
be accurately and efficiently read by the sequencing instrument.

Sequencing strategies and platforms
Library features are specific to each sequencing platform, which requires se-
lecting in advance the sequencing strategy to be employed. Pure nucleic acid
sequencing-based strategies can be broadly divided in two groups. Short-read
sequencing (SRS) platforms provide large amounts of data yet with short se-
quencing reads (typically 150 nucleotides). In contrast, long-read sequencing
(LRS) platforms yield much longer sequences (thousands or even million of nu-
cleotides), yet with a lower throughput, and typically lower sequence quality.
The SRS market is dominated by two main companies with proprietary plat-
forms, namely Illumina and BGI, although PacBio recently released their own
SRS platform called ONSO. The LRS market is also dominated by two different
companies with proprietary technologies, which are Oxford Nanopore (ONT)
and Pacific Biosciences (Pacbio).

Sequencing enterprises, as well as auxiliary biotechnological companies, provide
library preparation kits that can be more or less customised for different pur-
poses.
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Technology Platforms Sequencing type Company
Sequencing by
synthesis (SBS)

MiSeq, NovaSeq Short-read
sequencing

Illumina

Combinatorial
probe-anchor
synthesis (cPAS)

DNBSeq Short-read
sequencing

BGI

Sequencing by
binding (SBB)
technology

Onso Short-read
sequencing

PacBio

Single Molecule
Real-Time
sequencing
(SMRT)

Sequel, Revio Long-read
sequencing

PacBio

Nanopore
sequencing

MinION,
GridION,
PromethION

Long-read
sequencing

Oxford Nanopore

Some of the most widely used sequencing technologies and platforms.

PCR-based vs. PCR-free library preparation
Sequencing library preparation procedures can be split into two main groups
depending on whether they PCR-amplify or not the DNA templates. Unlike in
the case of targeted amplicon sequencing, in which the objective is to amplify a
specific target region, the aim of including a PCR step in shotgun-based library
preparation is to increase the molarity of the library and/or to attach indices
(see below) to the adaptors.

Learn more about PCR-based and PCR-free library preparation in this article
by Jones et al. [Jones et al., 2015].

Indices and multiplexing
Usually, library preparation also entails tagging molecules with unique sample
identifiers known as indices, which enable pooling molecules derived from mul-
tiple samples in a single sequencing run. This can be achieved in PCR-free
protocols by using adaptors containing unique indices per sample, or by using
indexed amplification primers in PCR-based library preparation protocols.

Learn more about indices and multiplexing in this article by Kircher et al.
[Kircher et al., 2012].

Unique molecular identifiers (UMIs)
Unique molecular identifiers (UMIs) are a type of molecular barcoding that
provides error correction and increased accuracy during sequencing by uniquely

https://www.illumina.com/
https://www.bgi.com/global
https://www.pacb.com/
https://www.pacb.com/
https://nanoporetech.com/
https://www.pnas.org/doi/abs/10.1073/pnas.1519288112
https://academic.oup.com/nar/article/40/1/e3/1287690
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tag each molecule (rather than each pool of molecules derived from a sample)
in a sample library. UMIs are used for a wide range of sequencing applications,
many around PCR duplicates in DNA and cDNA. UMI deduplication is also
useful for RNA-seq gene expression analysis and other quantitative sequencing
methods.

Learn more about unique molecular identifiers in this article by Kivioja et al.
[Kivioja et al., 2011].

Contents of this section were created by Antton Alberdi.

9.1 Host genomics and microbial metagenomics
The library preparation strategies for generating host genomic (HG) and micro-
bial metagenomic (MG) data are generally the same.

DNA fragmentation

Short-read sequencing libraries requires DNA to be sheared to the desired
fragment-length (usually 400-500 nucleotides), which can be achieved using
either chemical (e.g., restriction enzymes) or physical (e.g. ultrasonication)
procedures. Some long-read sequencing libraries intend to keep the largest
DNA molecules possible, although some others recommend fragmenting to
optimal mid-length molecules (e.g., around 10,000 nucleotides for Pacbio HiFi).
After fragmentation, many library preparation protocols require repairing
molecule ends by converting 5’-protruding and/or 3’-protruding ends to
5’-phosphorylated, blunt-end (see below) molecules.

Adaptor ligation

In shotgun libraries adaptors are merged to DNA template molecules through
chemical ligation (e.g., using a ligase enzyme). The ligation process is slightly
different depending on whether the DNA template has blunt- or sticky-ends. In
blunt ends, both strands are of equal length – i.e. they end at the same base
position, leaving no unpaired bases on either strand, while in sticky ends, one
strand is longer than the other. Some protocols deliberately create sticky-ends
from blunt-end fragmented DNA molecules by adding a single adenine base to
form an overhang by an A-tailing reaction. This A overhang allows adapters
containing a single thymine overhanging base to pair with the DNA fragments.

An example of a blunt-end molecule:

5'-GATCTGACTGATGCGTATGCTAGT-3'
3'-CTAGACTGACTACGCATACGATCA-5'

An example of a sticky-end molecule:

5'-GATCTGACTGATGCGTATGCTAGT-3'
3'-CTAGACTGACTACGCATACGATC-5'

https://www.nature.com/articles/nmeth.1778
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List of available protocols

Type Name Author/owner Protocol/Article
SRS Blunt-End

Single-Tube
(BEST) library
prep protocol

Open access Article

SRS Santa Cruz
Reaction (SCR)
single-stranded
library prep
protocol

Open access Article

SRS Illumina Protocol
LRS SMRTbell prep

kit 3.0 for PacBio
HiFi Sequencing

Pacbio Protocol

9.2 Host transcriptomics
Library preparation for host transcriptomics (HT) requires some extra steps to
the already described procedures for host genomics and microbial metagenomics.
This is due to two main reasons. First, because RNA molecules cannot be
directly built into most sequencing libraries, and require instead to generate
complementary DNA (cDNA) before library preparation. Second, because gene
transcripts tend to be overwhelmingly dominated by rRNA and mtDNA genes,
which are often not of interest for the researcher.

Sample quality assessment

Before starting any library preparation protocol assessing the quality of RNA
samples is strongly recommended. While traditionally assessed through agarose
gel electrophoresis, nowadays RNA quality assessment is performed on elec-
tropherogram profiles, which are produced by nucleic acid fragment analysis in-
struments (e.g. Bioanalyzer, Fragment Analyzer). Traditionally, a simple model
evaluating the 28S to 18S rRNA ratio was used as a criterion for RNA quality.
However, the most common metric currently employed for assessing the preser-
vation quality of RNA is the RNA integrity number (RIN), which accounts for
more RNA features for assessing sample quality [Schroeder et al., 2006]. RIN
values range from 10 (intact RNA) to 1 (totally degraded RNA). For example,
the poly(A) enrichment procedures explained below require high quality RNA
(RIN > 8), because RNA degradaation to breaks within the transcript body and
due to the selection of the poly(A) tail, the 3’ ends are enriched while the more
5’ sequences would not be captured, leading to a strong 3’ bias for degraded
RNA inputs.

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12871
https://academic.oup.com/jhered/article/112/3/241/6188529?login=true
https://www.pacb.com/wp-content/uploads/Procedure-checklist-Preparing-whole-genome-and-metagenome-libraries-using-SMRTbell-prep-kit-3.0.pdf
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DNA removal

Depending on the RNA extraction method employed, it is not rare trace
amounts of genomic DNA (gDNA) to be co-purified with RNA. Contami-
nating gDNA can interfere with reverse transcription and may lead to false
positives, higher background, or lower detection in sensitive applications such
as RT-qPCR. The traditional method of gDNA removal is the addition of
DNase I to RNA extracts. DNase I must be removed prior to cDNA synthesis
since any residual enzyme would degrade single-stranded DNA. Unfortunately,
RNA loss or damage can occur during DNase I inactivation treatment. As an
alternative to DNase I, double-strand–specific DNases are available to eliminate
contaminating gDNA without affecting RNA or single-stranded DNAs.

Stranded vs. non-stranded transcriptomics

RNA-Seq libraries can be stranded or non-stranded (unstranded), a decision
that affects data analysis and interpretation. Stranded RNA-Seq (also referred
to as strand-specific or directional RNA-Seq) enables researchers to determine
the orientation of the transcript, whereas this information is lost in non-stranded,
or standard, RNA-Seq. Non-stranded RNA-Seq is often sufficient for measuring
gene expression in organisms with well-annotated genomes, as with a reference
transcriptome, it is possible to infer orientation for most of the sequencing reads.
As there are fewer steps than stranded library preparation, the benefits of this
approach are lower cost, simpler execution, and greater recovery of material,
which renders non-stranded RNA-Seq the preferred option for holo-omic anal-
yses. In contrast, stranded RNA-Seq is useful if the aims include annotating
genomes, identifying antisense transcripts or discovering novel transcripts.

cDNA conversion

Most RNA-Seq experiments are carried out on instruments that sequence DNA
molecules, rather than RNA. This implies that RNA conversion to cDNA is a
required step before library preparation. The synthesis of cDNA from an RNA
template is carried out via reverse transcription using reverse transcriptases. In
nature, these enzymes convert the viral RNA genome into a complementary
DNA (cDNA) molecule, which can integrate into the host’s genome, among
other processes.

Reverse transcription, similar to PCR, requires the use of primers. Two main
types of primers:

• Random primers: this type of primers are oligonucleotides with ran-
dom base sequences. They are often six nucleotides long and are usually
referred to as random hexamers. While random primers help improve
cDNA synthesis for detection, they are not suitable for full-length reverse
transcription of long RNA. Increasing the concentration of random hex-
amers in reverse transcription reactions improves cDNA yield but results
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in shorter cDNA fragments due to increased binding at multiple sites on
the same template

• oligo(dT) primers: this type of primers consist of a stretch of 12–18
deoxythymidines that anneal to poly(A) tails of eukaryotic mRNAs (see
the section below for further details).

Reverse transcription reactions for cDNA library construction and sequencing
involve two main steps: first-strand cDNA synthesis and second-strand cDNA
synthesis.

• First-strand cDNA synthesis: this initial step generates a cDNA:RNA
hybrid through the below-described three-step process.

– Primer annealing: in this step primers are attached to the RNA
template, which usually happens before reverse transcriptase and nec-
essary components (e.g., buffer, dNTPs, RNase inhibitor) are added.

– DNA polymerisation: in this step the complementary DNA is
polymerised by the reverse transcriptase enzyme. With oligo(dT)
primers (Tm ~35–50°C), the reaction is often incubated directly at
the optimal temperature of the reverse transcriptase (37–50°C), while
random hexamers typically have lower Tm (~10–15°C) due to their
shorter length. Using a thermostable reverse transcriptase allows, a
higher reaction temperature (e.g., 50°C), to help denature RNA with
high GC content or secondary structures without impacting enzyme
activity. With such enzymes, high-temperature incubation can result
in an increase in cDNA yield, length, and representation.

– Enzyme deactivation: in this final step temperature is increased
to 70–85°C, depending upon the thermostability of the enzyme, to
deactivate the reverse transcriptase.

• Second-strand cDNA synthesis: in this second step the first-strand
cDNA is used as a template to generate double-stranded cDNA represent-
ing the RNA targets. Synthesis of double-stranded cDNA often employs
a different DNA polymerase to produce the complementary strand of the
first cDNA strand.

rRNA depletion through poly-A enrichment

Ribosomal RNA (rRNA) helps translate the information in messenger RNA
(mRNA) into protein. It is the predominant form of RNA found in most cells,
which can make over 80% of cellular RNA despite never being translated into
proteins itself. In consequence, most reads derived from RNA belong to rRNAs,
unless depletion strategies are implemented.

Excessively abundant rRNA sequences can be depleted using multiple strategies,
which are covered in the Microbial metatranscriptomics. The most broadly em-
ployed enrichment strategy when dealing with eukaryotic organisms is rRNA de-
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pletion through poly-A enrichment. This strategy relies on the fact that mature
coding mRNAs of eukaryotic organisms contain polyA tails, long chains (tens
to hundreds) of adenine nucleotides that are added to primary RNA transcripts
to increase the stability of the molecule. However, not all transcripts contain
poly(A) tails. microRNAs, small nucleolar RNAs (snoRNAs), transfer RNAs
(tRNAs), some long non-coding RNAs (lncRNAs), and even protein-coding mR-
NAs such as histone mRNAs do not contail poly(A) tails, thus will be removed
together with rRNA during poly(A) selection. If interested in quantifying ex-
pression of such transcripts the use of alternative methods is recommended.

The most broadly employed strategies to deplete rRNA through poly-A en-
richment rely either on hybridisation with Oligo(dT)-attached magnetic beads
or oligo(dT) priming during cDNA conversion step. In the former strategy,
poly(A)-containing RNA molecules hybridise with Oligo(dT) stretches attached
to magnetic beads. Following hybridisation, the supernatant consisting of non-
polyadenylated molecules is removed. The beads are washed prior to elution of
the poly(A)-selected RNA in water or buffer.

List of available protocols

Type Name Author/owner Protocol/Article
oligo(dT)
hybridisation

Dynabeads Oligo
(dT)25-61005

Thermo Fisher Protocol

oligo(dT)
priming

Contents of this section were created by Antton Alberdi.

9.3 Microbial metatranscriptomics
Sequencing library preparation for microbial metatranscriptomics faces the same
challenges as host genomics, but the fact that prokaryotic mRNA have no poly-
A tails makes it impossible to apply oligo(dT)-based rRNA depletion strategies.
There are three other alternatives through which prokaryotic rRNA can be de-
pleted. These three strategies require designing oligos, probes or guides whose
sequences complement the DNA sequences that should be removed. Most com-
mercial kits contain probes designed to remove rRNA sequences of the most
commonly employed animal hosts (Human/Mouse/Rat), as well as bacteria,
but custom probes targeting any genes could be employed. The first two meth-
ods shown below are implemented before library-preparation, thus independent
reactions must be ran for each sample. The last strategy is implemented after
library preparation, which enables multiple indexed libraries to be pooled, and
thus performing a single reaction per pool.

https://www.thermofisher.com/dk/en/home/references/protocols/nucleic-acid-purification-and-analysis/mrna-protocols/dynabeads-oligo-dt-25-61002.html
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Capture-based rRNA depletion
This method relies on capture rRNA with complimentary oligos that are coupled
to paramagnetic beads. Unwanted transcripts get bound to beads, which can
then be retained using a magnet, while the non-hybridasing transcripts remain
in the elution.

RNAse-based rRNA depletion
A more recent technological upgrade to capture-based rRNA depletion is to,
instead of using paramagnetic beads, degrade RNA:DNA hybrids using RNase
H [Huang et al., 2020].

CRISPR/Cas9-based rRNA depletion
The newest method of all three relies on the DNA claveage capacity of the
Cas9 enzyme [Gu et al., 2016]. In this method, custom-designed guides are
used for the Cas9 enzyme to cleveage unwanted sequences. This strategy is
applied once libraries are prepared, and before the final PCR amplification is
conducted. When the targetted molecules are cleaveged, they lack one of the
two adaptors, and therefore they are not amplified, resulting in a considerable
depletion compared to the rest of the library.

List of available protocols

Name Strategy Author/owner Protocol/Article
Custom
capture-based
depletion

Capture-based Open Source Article [Kraus
et al., 2019]

Legacy Ribo-Zero Capture-based Illumina
Custom
RNAse-based
depletion

RNAse-based Open Source Article [Huang
et al., 2020]

Ribo-Zero Plus RNAse-based Illumina
NEBNext®
rRNA Depletion
Kit

RNAse-based NEB

DASH Cas9-based Open Source Article [Prezza
et al., 2020]

Contents of this section were created by Antton Alberdi.

https://www.nature.com/articles/s41598-019-48692-2
https://academic.oup.com/nar/article/48/4/e20/5687826
https://rnajournal.cshlp.org/content/26/8/1069.full
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Chapter 10

About bioinformatics

Bioinformatic processing of raw sequencing and mass spectrometry data is the
computational step that precedes statistical analyses and integration of multi-
omic data. Through bioinformatic processing raw data are converted into mean-
ingful bits of information, usually drastically decreasing the size of the data sets
that are used for downstream analyses.

Raw sequencing and mass spectrometry-based data files used in holo-omic anal-
yses are typically in the realm of gigabytes (Gb) or even terabytes (Tb). Many
of the performed operations require large amounts of memory (some more than
1Tb), which makes it impossible to process data in personal computers. In-
stead, most bioinformatics tasks are performed in computational clusters with
access to large amounts of memory and many CPUs and GPUs, which enable
parallelising computational tasks thus speeding up data processing time.

However, for the sake of simplicity and practicality, the example datasets in-
cluded in this Workbook have been considerably downscaled to enable repro-
ducing the exercises in personal computers.

All bioinformatic analyses included in the Holo-omics workbook are con-
ducted in a Unix command line Shell environment (BASH/SH). You can find
the details to set-up your SHELL environment in the section Prepare your Shell
environment.

10.1 Prepare your shell environment
If the comment chunks of the code (text after #) is creating you problems,
use the following code to disable interactive comments and avoid issues when
copy-pasting code:
setopt interactivecomments
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Required software
Bioinformatic pipelines for processing omic data require the use of dozens of soft-
ware. All the required software are listed in the conda environment installation
file available here.

Install conda / miniconda
Conda is an open-source package management system and environment man-
agement system that quickly installs, runs, and updates packages and their
dependencies. If conda is not installed in your system, the first step is to
install miniconda (a free minimal installer for conda, enough to run the bioin-
formatic analyses explained in the workbook). Miniconda installers for Linux,
Mac and Windows operating systems can be found in the following website:
https://docs.conda.io/en/latest/miniconda.html

Once conda or miniconda is installed in your system, you should be able to
create and manage your conda environments. You can test whether conda has
been succesfully installed using the following code:
conda -V
#> conda 22.11.1 #or whatever version you have installed

Install mamba (optional)
An optional step is to install mamba, which is a reimplementation of the conda
package manager in C++, which speeds up many of the processes. Mamba can
be installed through the command line using the conda install option.
conda install mamba -n base -c conda-forge

Create a conda environment
All the bioinformatic analyses explained in this workbook will be run within an
environment containing all the necessary software. The file that specifies which
software to install in the environment is available here, and can be retrieved
using wget (as shown in the code below), or downloading from the Internet
browser. If using the latter option, don’t forget to provide the absolute path to
the ‘holo-omics-env.yaml’ file in the mamba create command.
wget https://raw.githubusercontent.com/holo-omics/holo-omics.github.io/main/bin/holo-omics-env.yaml #download installer file
conda update conda #to ensure everything is updated
conda deactivate #deactivate any conda environment before creating a new one
conda env create -f holo-omics-env.yml
rm holo-omics-env.yaml #remove installer file

As the environment contains dozens of softwares, the process of creating it will
take a while. It is recommended to have a good Internet connection to speed-up

https://raw.githubusercontent.com/holo-omics/holo-omics.github.io/main/bin/holo-omics-env.yaml
https://docs.conda.io/en/latest/miniconda.html
https://raw.githubusercontent.com/holo-omics/holo-omics.github.io/main/bin/holo-omics-env.yaml
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software download. Once the installation is over, you can double-check whether
the environment has been successfully created using the following script:
conda activate holo-omics
#> (holo-omics) anttonalberdi@Anttons-MBP ~ %

The (holo-omics) specifies the environment you are at. To get out of the envi-
ronment use:
conda env list
#> base * /Users/anttonalberdi/miniconda3
#> holo-omics /Users/anttonalberdi/miniconda3/envs/holo-omics

Activate the holo-omics conda environment
Whenever running the holo-omic analyses explained in this workbook, it will
be necessary to activate the holo-omics environment through the following com-
mand:
conda activate holo-omics
#> (holo-omics) anttonalberdi@Anttons-MBP ~ %

Install software in conda environment
Once the environment is activated, you can install the required software us-
ing the Conda package manager. For example, to install metawrap, run the
following command:
conda activate holo-omics
conda install -y -c ursky metawrap-mg=1.2.2

10.2 Using snakemake for workflow manage-
ment

Snakemake is a workflow management system that helps automate the execution
of computational workflows. It is designed to handle complex dependencies
between the input files, output files, and the software tools used to process the
data. Snakemake is based on the Python programming language and provides
a simple and intuitive syntax for defining rules and dependencies.

Here is a brief overview of how Snakemake works and its basic usage:

1. Define the input and output files: In Snakemake, you define the input
and output files for each step in your workflow. This allows Snakemake
to determine when a step needs to be executed based on the availability
of its inputs and the freshness of its outputs.

2. Write rules: Next, you write rules that describe the software tools and
commands needed to process the input files into the output files. A rule
consists of a name, input and output files, and a command to run.
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3. Create a workflow: Once you have defined the rules, you create a work-
flow by specifying the order in which the rules should be executed. Snake-
make automatically resolves the dependencies between the rules based on
the input and output files.

4. Run the workflow: Finally, you run the workflow using the snakemake
command. Snakemake analyzes the input and output files and executes
the rules in the correct order to generate the desired output files.

rule count_reads:
input:

"reads/sample1.fastq.gz",
"reads/sample2.fastq.gz"

output:
"counts.txt"

shell:
"fastqc {input} -o {output} -f fastq"

rule trim_reads:
input:

"reads/sample1.fastq.gz",
"reads/sample2.fastq.gz"

output:
"trimmed/sample1.trimmed.fastq.gz",
"trimmed/sample2.trimmed.fastq.gz"

shell:
"trimmomatic SE {input} {output} -threads 4"

rule align_reads:
input:

"trimmed/sample1.trimmed.fastq.gz",
"trimmed/sample2.trimmed.fastq.gz"

output:
"aligned.bam"

shell:
"bwa mem -t 4 genome.fa {input} | samtools view -Sb - > {output}"

rule call_variants:
input:

"aligned.bam"
output:

"variants.vcf"
shell:

"freebayes -f genome.fa {input} > {output}"

workflow:
rule count_reads
rule trim_reads
rule align_reads
rule call_variants
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To run this workflow, save the code to a file named Snakefile and execute the
following command in your terminal:
snakemake
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Chapter 11

Sequencing data
preprocessing

The first step of the bioinformatic pipeline is to pre-process the raw sequencing
data to prepare them for downstream analyses.

Preprocess the reads using fastp
Raw sequencing data require an initial preprocessing to get rid off low-quality
nucleotides and reads, as well as any remains of sequencing adaptors that can
mess around in the downstream analyses. An efficient way to do so is to use the
software fastp, which can perform all above-mentioned operations in a single
go and directly on compressed files.

fastP documentation can be found here.
fastp \

--in1 {input.r1i} --in2 {input.r2i} \
--out1 {output.r1o} --out2 {output.r2o} \
--trim_poly_g \
--trim_poly_x \
--low_complexity_filter \
--n_base_limit 5 \
--qualified_quality_phred 20 \
--length_required 60 \
--thread {threads} \
--html {output.fastp_html} \
--json {output.fastp_json} \
--adapter_sequence {params.adapter1} \
--adapter_sequence_r2 {params.adapter2}
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Splitting host and non-host data
Depending on the sample type employed for data generation, sequencing data
might contain only host reads, only microbial reads, or a mixture of both.
For example, blood sampled from an animal is expected to only contain host
DNA/RNA reads (unless an infection is ongoing), while DNA extracted from a
microbial culture is only expected to contain microbial DNA/RNA reads (unless
human contamination has happened). In contrast, intestinal content samples,
faecal samples, leave samples or root samples can contain both host and micro-
bial nucleic acids.

Index host genome

In order to map metagenomic reads to a reference host genome, it is necessary
to index the genome. An index is a data structure that allows for efficient
searching of the reference genome by breaking it down into smaller, more man-
ageable pieces. Without an index, aligning reads to a reference genome would be
prohibitively slow, especially for large genomes. Bowtie2 is a popular software
tool for aligning reads to a reference genome, and it requires an index of the
reference genome before alignment can be performed. Bowtie2 uses an index
based on the Burrows-Wheeler transform (BWT) algorithm, which enables it
to efficiently align reads to the reference genome. Here are the basic command
to create a Bowtie2 index for a reference genome:
bowtie2-build \

--large-index \
--threads {threads} \

{input.genome} {output.index}

Map samples to host genomes

The next step is to map the reads against the reference genome, followed by a
split between reads that have been mapped (in the example below are retained
in a BAM/SAM file) and the reads that were not mapped (in the example below
outputed to fastq files). The mapped reads can be used for performing popula-
tion genomic analyses, while the unmapped reads can be used for metagenomic
analyses.
# Map reads to the reference genome using Bowtie2
bowtie2 \

--time \
--threads {threads} \
-x {indexed.genome} \
-1 {input.r1i} \
-2 {input.r2i} \

| samtools view -b -@ {threads} - | samtools sort -@ {threads} -o {output.all_bam} -

# Extract non-host reads
samtools view -b -f12 -@ {threads} {output.all_bam} \
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| samtools fastq -@ {threads} -1 {output.non_host_r1} -2 {output.non_host_r2} -

# Send host reads to BAM
samtools view -b -F12 -@ {threads} {output.all_bam} \
| samtools sort -@ {threads} -o {output.host_bam} -
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Chapter 12

Host genomics (HG) data
processing

Bioinformatic procedures for host genomics can be grouped in two main tasks,
the generation of the reference genome and the resequencing of the genome.
The first one aims at creating a (often single) reference genome sequence for a
species, a breed or a population, which is then used to generate genomic profiles
for multiple individuals. Reference genomes generation requires a considerably
higher sequencing effort than resequencing, and the use of multiple sequencing
technologies (long-read, Hi-C, etc.) is often needed to resolve the structural
complexities of most eukaryotic organisms. Genome resequencing, in contrast,
usually relies on short-read sequencing, which provide sufficient information for
calling nucleotide variarions.

Overviews of both procedures are shown in the following chapters:

• Host reference genome
• Host genome resequencing

12.1 Host reference genome
Genomes of eukaryotic organisms are generally complex, because they carry
multiple copies of the same genome, genomes contain duplications, repetitive
sequences, mobile elements, etc. In consequence, generating a high-quality refer-
ence genome that represents all this complexity is a complex effort, that today,
requires multiple complementary molecular techniques to be merged. Although
multiple genome assembly protocols exist, in this guidebook we will focus on the
one employed in the Vertebrates Genomes Project, the largest consortium aim-
ing at generating animal reference genomes in a standardised way [Rhie et al.,
2021]. The VGP assembly pipeline uses data generated by a variety of technolo-
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gies, including PacBio HiFi reads, Bionano optical maps, and Hi-C chromatin
interaction maps.

12.1.1 Genome quality
Before advancing with genome generation procedures, it is important to acknowl-
edge that reference genomes can have different qualities. Quality is measured by
assembly statistics, such as the N50 and L90 metrics, which provide an overview
of the completeness and accuracy of the genome. Based on those metrics, eu-
karyotic genomes are usually categorised in three levels:

Contig level: Contig level refers to the lowest level of genome assembly, where
the genome is fragmented into small pieces called contigs. Contigs are contigu-
ous sequences of DNA that are typically hundreds to thousands of base pairs in
length. Contig-level genome assemblies lack information about the order and
orientation of the contigs and may contain gaps between them. Scaffold level:
Scaffold level is the next level of genome assembly, where contigs are linked
together using paired-end reads or other genomic information to form larger
structures called scaffolds. Scaffolds provide information about the order and
orientation of contigs but may still contain gaps between them. Chromosome
level: Chromosome level is the highest level of genome assembly, where the
genome is fully assembled into chromosomes. Chromosome-level assemblies pro-
vide the most complete and accurate representation of the genome, with few
gaps and accurate order and orientation of genomic elements. These assemblies
typically require multiple sources of genomic information and sophisticated com-
putational tools to produce.

12.1.2 Genome profile analysis
Gathering metrics on genome properties before initiating a de novo genome
assembly project is very helpful in setting expectations for the assembly. In the
past, DNA flow cytometry was commonly used to estimate genome size, but
computational approaches have become the preferred method in recent times
[Wang et al., 2020]. Currently, genome profiling is based on k-mer frequency
analysis, which not only provides information on the genome’s complexity, such
as its size and levels of heterozygosity and repeat content, but also on the quality
of the data.

k-mer spectra can be generated with Meryl, which generates k-mer profile by
decomposing the sequencing data into k-length substrings, counting the occur-
rence of each k-mer and determining its frequency.
#Create a k-mer database
meryl count k=31 mer=both output reads.meryl threads=4 \

input reads_1.fastq reads_2.fastq

#Generate a k-mer spectrum
meryl histogram reads.meryl > reads.hist
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The k-mer histogram produced by Meryl can be used to deduce genome proper-
ties with the help of GenomeScope2. This tool utilises a nonlinear least-squares
optimisation to fit a combination of negative binomial distributions, provid-
ing estimates for genome size, repetitiveness, and heterozygosity rates [Ranallo-
Benavidez et al., 2020].
./genomescope2.pl -k 31 -i reads.hist -o reads_genomescope

12.1.3 Genome assembly using hifiasm
Hifiasm is a powerful de novo assembler specifically developed for PacBio HiFi
reads. One of the key advantages of hifiasm is that it allows us to resolve near-
identical, but not exactly identical, sequences, such as repeats and segmental
duplications [Cheng et al., 2021]. Hifiasm can be run in multiple modes depend-
ing on data availability:

Solo mode

The solo mode generates a pseudohaplotype assembly, resulting in a primary
and an alternate assembly solely using HiFi reads.

Hi-C-phased mode

The Hi-C-phased mode generates a hap1 assembly and a hap2 assembly, which
are phased using the Hi-C reads from the same individual.

Trio mode

The trio mode requires long-read PacBio HiFi reads from child, and Illumina
short-reads from both parents to generate a maternal assembly and a paternal
assembly, which are phased using reads from the parents.

12.1.4 Assembly evaluation
Assemblies can be evaluated using a variety of approaches that assess different
parameters of the assembled genomes.

gfastats can be used or summary statistics (e.g., contig count, N50, NG50, etc.)

BUSCO assesses genome completeness based on an evolutionary functional per-
spective. BUSCO genes are anticipated to exist in a single-copy haplotype for a
particular clade, and their presence, absence, or duplication can help researchers
determine whether an assembly is deficient in significant regions or has multiple
copies, which may necessitate purging [Simão et al., 2015].

Merqury performs a reference-free assessment of assembly completeness and
phasing based on k-mers. Merqury compares k-mers in the reads to the k-mers
found in the assemblies, as well as the copy number (CN) of each k-mer in the
assemblies [Rhie et al., 2020].
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12.1.5 Assembly scaffolding
The following step in the process is to assemble contigs into scaffolds, i.e., to
connect contigs interspaced with gaps. While traditionally, this process has
been performed using paired-end short-read data with long insert-sizes, the
VGP pipeline currently scaffolds using two more advanced technologies: Bionano
optical maps and Hi-C data.

Scaffolding using Bionano optical maps

Content to be added.

Scaffolding using Hi-C data

Content to be added.

12.1.6 Final genome evaluation
Content to be added.

Contents of this section were created by Antton Alberdi.

12.1.7 Reference genome annotation
Content to be added.

12.2 Host genome resequencing
Once a reference genome is available, short-read sequencing data can be used
for generating single nucleotide polymorphism (SNP) data. Although multiple
options exists, the pipeline below describes a typical workflow to process data
using Bowtie2 for read mapping, Picard for marking duplicates, and GATK for
performing variant calling. The resulting SNP data can be used for a wide range
of downstream analyses, such as identifying genetic variants associated with
diseases, studying population genetics, and performing genome-wide association
studies (GWAS). The pipeline is customisable and can be modified to suit the
specific needs of the researcher, such as changing the parameters of the tools used
or incorporating additional analysis steps. Overall, this pipeline is a powerful
tool for investigating genetic variation in genomes and can provide valuable
insights into the genetic basis of various biological processes.

The first step is to map the reads agains the reference genome:
bowtie2 -x reference_genome_index \

-1 forward_reads.fq \
-2 reverse_reads.fq \
-S mapped_reads.sam
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If the mapping file is saved to an uncompressed SAM file, this should be com-
pressed, and sorted for downstream analyses.
samtools view -bS mapped_reads.sam > mapped_reads.bam
samtools sort mapped_reads.bam -o sorted_mapped_reads.bam

Picard can be then used to mark duplicates in the sorted BAM file.
java -jar picard.jar MarkDuplicates \

INPUT=sorted_mapped_reads.bam \
OUTPUT=dedup_sorted_mapped_reads.bam \
METRICS_FILE=metrics.txt VALIDATION_STRINGENCY=LENIENT

The deduplicated BAM file without redundant reads must be done indexed
before starting the variant calling.
samtools index dedup_sorted_mapped_reads.bam

GATK4 is the used to perform local realignment around indels.
gatk --java-options "-Xmx4g" IndelRealigner \

-R reference_genome.fa \
-I dedup_sorted_mapped_reads.bam
-O realigned_reads.bam \
-targetIntervals intervals.list

Then, base quality score recalibration is performed using GATK4.
gatk --java-options "-Xmx4g" BaseRecalibrator \

-R reference_genome.fa
-I realigned_reads.bam
--known-sites known_snps.vcf \
-O recal_data.table

Subsequently, base quality score recalibration is applied to the.
gatk --java-options "-Xmx4g" ApplyBQSR \

-R reference_genome.fa
-I realigned_reads.bam
--bqsr-recal-file recal_data.table \
-O recal_reads.bam
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Chapter 13

Microbial metagenomics
(MG) data processing

Microbial metagenomic data processing can be conducted following different
strategies. Decision on which approach to use should be based on the aims
of the study, available reference data, amount of generated data, and many
other criteria. In this workbook we consider three main approaches that require
different bioinformatic pipelines to be implemented.

• Reference-based approach: it relies on a reference database of micro-
bial genomes to which sequencing reads can be mapped to obtain esti-
mations of relative proportion of reads belonging to each of the genomes
available in the reference database. It is the simplest and computation-
ally less expensive approach, yet it completely relies on a complete and
representative reference database.

• Assembly-based approach: it is based on assembling sequencing reads
into longer DNA sequences known as contigs, which can then be used to
predict genes and perform functional analyses. The main limitation of this
approach is that the entire metagenome (set of contigs) in each sample is
considered as a single unit, thus overlooking which bacterial genome each
detected gene belongs to.

• Genome-resolved approach: it is the most advanced of the three ap-
proaches, and the strategy that provides the largest amount of informa-
tion, as the aim of this approach is to directly reconstruct all the genomes
in a metagenome. This is achieved by binning contigs into Metagenome-
Assembled Genomes (MAGs), which can then be taxonomically and func-
tionally annotated to perform sound community-level analyses.

Contents of this section were created by Antton Alberdi.
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13.1 Reference-based
Reference-based metagenomics is the approach that aims at characterising
metagenomes based on existing genome sequences that are used as reference.
This approach is meaningful when the microbial community under study
is well known, such as the human microbiome, or when a reference MAG
catalogue has been generated from a subset of samples under analysis. When
the genome catalogue used as a reference has not been generated from the same
environment (e.g., using human gut microorganisms as reference for vulture
gut microbiomes), there are two major risks. The first one is that some of the
microorganisms present in the studied environment might not be represented
in the reference catalogue, which results in diversity underestimations. The
second one is that the microorganisms present in the reference catalogue are
similar but not identical to the ones in the target sample, which might result in
incorrect taxonomic and functional inferences. It is therefore important to keep
these caveats in mind when performing reference-based metagenomic analyses,
mainly when dealing with non-model host organisms.

13.2 Assembly-based
Assembly-based approaches for processing metagenomic data are based on as-
sembling sequencing reads into longer DNA sequences known as contigs, which
can then be used to predict genes and perform functional analyses. The main
limitation of this approach is that the entire metagenome (set of contigs) in each
sample is considered as a single unit, thus overlooking which bacterial genome
each detected gene belongs to. Assembly-based approaches can be divided in
two main strategies:

• Individual assembly-based
• Coassembly-based

Individual assembly-based
Two of the most popular metagenome assemblers are Megahit and MetaS-
pades. Metaspades is considered superior in terms of assembly quality, yet
memory requirements are much larger than those of Megahit. Thus, one of the
most relevant criteria to choose the assembler to be employed is the balance
between amount of data and available memory. Another minor, yet relevant
difference between both assemblers is that Megahit allows removing contings
below a certain size, while MetaSpades needs to be piped with another software
(e.g. bbmap) to get rid off barely informative yet often abundant short contigs.

Individual assembly using Megahit

megahit \
-t {threads} \
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--verbose \
--min-contig-len 1500 \
-1 {input.r1} -2 {input.r2} \
-o {params.workdir}
2> {log}

Individual assembly using MetaSpades

metaspades.py \
-t {threads} \
-k 21,33,55,77,99 \
-1 {input.r1} -2 {input.r2} \
-o {params.workdir}
2> {log}

# Remove contigs shorter than 1,500 bp using bbmap
reformat.sh \

in={params.workdir}/scaffolds.fasta \
out={output.assembly} \
minlength=1500

Assembly statistics using Quast

The metagenome assemblies can have very different properties depending on
the amount of data used for the assembly, the complexity of the microbial
community, and other biological and technical aspects. It is therefore convenient
to obtain some general statistics of the assemblies to decide whether they look
meaningful to continue with downstream analyses. This can be easily done using
the software Quast.
quast \

-o {output.report} \
--threads {threads} \
{input.assembly}

Coassembly-based
Coassembly is the process of assembling input files consisting of reads from
multiple samples, as opposed to performing an independent assembly for each
sample, where the input would only include reads from that particular sample.
Coassembly has several advantages, such as increased read depth, simplified
comparison across samples by utilizing a single reference assembly for all, and
frequently, a better capability to recover genomes from metagenomes by obtain-
ing differential coverage information. However, it can also limit the capacity to
recover strain-level variation.

Coassembling multiple samples does not require special assemblers, but only
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preparing the input files in the correct way to enable assemblers to perform the
assembly over multiple samples. An example for metaspades is shown below:
#Concatenate input reads into a single big input file
cat {input.reads}/*_1.fq.gz > {params.r1_cat}
cat {input.reads}/*_2.fq.gz > {params.r2_cat}

# Run metaspades
metaspades.py \

-t {threads} \
-k 21,33,55,77,99 \
-1 {params.r1_cat} -2 {params.r2_cat} \
-o {params.workdir}
2> {log}

# Remove contigs shorter than 1,500 bp using bbmap
reformat.sh \

in={params.workdir}/scaffolds.fasta \
out={output.Coassembly} \
minlength=1500

Note that the genome-resolved metagenomic approach also relies on assem-
blies or co-assemblies, but downstream binning procedures are explained in the
genome-resolved approach section.

Gene annotation
Gene annotation refers to the process of identifing and assigning function to
genes present in an assembly. In the first step, protein-coding and other types
of genes are identified using tools such as Prodigal based on structural informa-
tion of the DNA sequences. These software also predict the protein sequences
these genes are expected to yield, which are then used to assign functions by
contrasting them with functionally annotated reference databases. Due to the
amount of reference databases available, it is common practice to match the
genes against multiple databases and yield multiple annotations per gene. Cur-
rently, multiple tools exist that perform all these procedures in a single pipeline,
such as DFAST [Tanizawa et al., 2017] and DRAM [Shaffer et al., 2020]. DFAST
annotates genes against the TIGRFAM and Clusters of Orthologous Groups
(COG) databases, while DRAM performs the annotation using Pfam, KEGG,
UniProt, CAZY and MEROPS databases.
DRAM.py annotate \

-i {input.assembly} \
-o {outdir} \
--threads {threads} \
--min_contig_size 1500

The procedure for annotating MAGs, which is explained in the genome-
resolved approach section, is identical to this one, with the only difference
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that the a MAG or a set of MAGs are used as input data rather than a
metagenomic assembly.

Read mapping
The aim of assembly-based analyses is often to obtain gene-abundance informa-
tion per studied sample, to characterise the functional properties of the entire
metagenome as a whole (as opposed to the genome-resolved approach ap-
proach, in which functional attributes are assigned to each MAG). This requires
reads from each sample to be mapped against the sequence of all protein-coding
genes identified during the annotation process. All gene prediction software
and annotation pipelines produce a FASTA file only containing gene sequences,
which is used as the reference material.

The gene catalogue needs to be indexed before the mapping.
bowtie2-build \

--large-index \
--threads {threads} \
{all_genes}.fa.gz

Then, the following step needs to be iterated for each sample, yielding a BAM
mapping file for each sample.
bowtie2 \

--time \
--threads {threads} \
-x {all_genes} \
-1 {input.r1} \
-2 {input.r2} \
| samtools sort -@ {threads} -o {output}

Or relative abundance per gene per sample.
coverm genome \

-b {params.BAMs}/*.bam \
-s ^ \
-m relative_abundance \
-t {threads} \
--min-covered-fraction 0 \
> {output.mapping_rate}

Contents of this section were created by Antton Alberdi.

13.3 Genome-resolved
Genome-resolved metagenomics aims at recovering near-complete bacterial
genomes from metagenomic mixtures. It relies on the assembling and read-
mapping procedures explained in assembly-based approach section, which
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is followed by a binning procedure to produce the so-called Metagenome-
Assembled Genomes (MAGs).

Note that entire suites and pipelines are available for conducting all the steps
outlined in this section, and often more. Some of them include:

• Anvi’o
• metaWRAP
• ATLAS

Binning
Metagenomic binning is the bioinformatic process that attempts to group
metagenomic sequences by their organism of origin {Goussarov}. In practice,
what binning does is to cluster contigs of a metagenomic assembly into putative
bacterial genomes. In the last decade over a dozen of binning algorithms have
been released, each relying on different structural and mathematical properties
of the input data.

Two of the most relevant structural properties to group contigs into bins are
oligonucleotide composition of contigs and present of universally conserved genes
in contigs. MaxBin, for example, relies on such universally conserved genes to
initialize clusters, which are then expanded using the oligonucleotide composi-
tion of contigs. Besides structural attributes of contigs, the main quantitative
measure used for binning is differential coverage, which is computed by counting
the number of reads from different samples mapped to the assembly. This infor-
mation is used by binning algorithms CONCOCT and MetaBat, for example.

Metabat and Maxbin require a depth file to be generated first.
jgi_summarize_bam_contig_depths \

--outputDepth {output.depth} \
{input.assemblybampath}

Example code for launching metabat2.
metabat2 \

-i {input.assemblypath} \
-a {input.depth} \
-o {output.basepath} \
-m 1500 \
-t {threads} \
--unbinned

Example code for launching MaxBin.
run_MaxBin.pl \

-contig {input.assemblypath} \
-abund {input.depth} \
-out {output.basepath} \
-thread {threads}
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Bin refinement
The performance of the binning algorithms is largely dependent on the specific
properties of each sample. A software that performs very well with a given
sample can be easily outcompeted by another one in the next sample. In conse-
quence, many researchers opt for ensemble approaches whereby assemblies are
binned using multiple algorithms, followed by a refinement step that merges all
generated information to yield consensus bins. This final step is ofter referred
to as “bin refinement”, and can be performed using tools like metaWRAP [Urit-
skiy et al., 2018] or Dastool [Sieber et al., 2018]. Several benchmarking studies
have shown that such ensemble approaches are usually better than individual
binning tools.

The following code can be used to run an ensemble binning using metaWRAP.
metawrap binning -o {params.outdir} \

-t {threads} \
-m {params.memory} \
-a {params.assembly} \
-l 1500 \
--metabat2 \
--maxbin2 \
--concoct \

The following code can be used to refine binds using metaWRAP.
metawrap bin_refinement \

-m {params.memory} \
-t {threads} \
-o {params.outdir} \
-A {params.concoct} \
-B {params.maxbin2} \
-C {params.metabat2} \
-c 70 \
-x 10

Bin quality assessment
Metagenomic binning is a powerful yet complex procedure that yields many
bins that do not properly represent bacterial genomes. It is therefore essen-
tial to assess the quality of those bins before considering them representative
of bacterial genomes. The two main parameters used for bin assessment are
completeness and contamination. Completeness refers to the fraction of a given
bacterial genome estimated to be represented in the bin, while contamination
refers to the proportion of the bin estimated to belong to a different genome.
The most commonly employed software to assess bin quality is CheckM, which
yields completeness and contamination metrics based on single-copy core genes.

Based on completeness and contamination metrics, a group of experts proposed
some community standards to classify bins according to their quality and es-
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tablish minimum quality requirements for considering a bin as a MAG [Bowers
et al., 2017].

Bin curation
Contamination is an issue that in certain cases can be minimised by curating
bins. The Anvi’o suite [Eren et al., 2015] provides a powerful visual interface
to manually curate bins by dropping contigs that display distinct features (e.g.,
taxonomic annotation, coverage, GC%) to the rest of the contigs included in
a bin. GUNC provides a way to implement a similar curation step in a more
automatised manner [Orakov et al., 2021].

Dereplication
Dereplication is the reduction of a set of MAGs based on high sequence sim-
ilarity between them [Evans and Denef, 2020]. Although this step is neither
essential nor meaningful in certain cases (e.g., when studying straing-level vari-
ation or pangenomes), in most cases it contributes to overcome issues such as
excessive computational demans, inflated diversity or inspecific read mapping.
If the catalogue of MAGs used to map sequencing reads to (see read mapping
section below) contains many similar genomes, read mapping results in multi-
ple high-quality alignments. Depending on the software used and parameters
chosen, this leads to sequencing reads either being randomly distributed across
the redundant genomes or being reported at all redundant locations. This can
bias quantitative estimations of relative representation of each MAG in a given
metagenomic sample.

Dereplication is based on pairwise comparisons of average nucleotide identity
(ANI) between MAGs. This implies that the number of comparisons scales
quadratically with an increasing amount of MAGs, which requires for efficient
strategies to perform dereplication in a cost-efficient way. A popular tool used
for dereplicating MAGs is dRep [Olm et al., 2017], which combines the fast
yet innacurate algorithm MASH with the slow but accurate gANI computation
to yield a fast and accurate estimation of ANIs between MAGs. An optimal
threshold that balances between retaining genome diversity while minimising
cross-mapping issues has been found to be 98% ANI.

Taxonomic annotation
Although not necessary for conducting most of the downstream analyses,
taxonomic annotation of MAGs is an important step to provide context,
improve comparability and facilitate result interpretation in holo-omic studies.
MAGs can be taxonomically annotated using different algorithms and reference
databases, but the Genome Taxonomy Database (GTDB) [Parks et al., 2022]
and associated taxonomic classification toolkit (GTDB-Tk) [Chaumeil et al.,
2022] have become the preferred option for many researchers.
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Functional annotation
Functional annotation refers to the process of identifying putative functions of
genes present in MAGs based on information available in reference databases.
As explained in the assembly-based approach, the first step is to predict
genes in the MAGs (unless these are available from the assembly), followed by
functional annotation by matching the protein sequences predicted from the
genes with reference databases. Currently, multiple tools exist that perform all
these procedures in a single pipeline, such as DFAST [Tanizawa et al., 2017] and
DRAM [Shaffer et al., 2020]. DFAST annotates genes against the TIGRFAM
and Clusters of Orthologous Groups (COG) databases, while DRAM performs
the annotation using Pfam, KEGG, UniProt, CAZY and MEROPS databases.
DRAM.py annotate \

-i {input.MAG} \
-o {outdir} \
--threads {threads} \
--min_contig_size 1500

These functional annotations can be used for performing functional gene enrich-
ment analyses, distilling them into genome-inferred functional traits, and many
other downstrean operations explained in the statistics part.

Read mapping
When the objective of a genome-resolved metagenomic analysis is to reconstruct
and analyse a microbiome, researchers usually require relative abundance infor-
mation to measure how abundant or rare each bacteria was in the analysed
sample. In order to achieve this, it is necessary to map the reads of each sample
back to the MAG catalogue and retrieve mapping statistics. The procedure is
identical to that explained in the assembly read-mapping section, yet using the
MAG catalogue as a reference database rather than the metagenomic assembly.
This procedure usually happens in two steps. In the first step, reads are mapped
to the MAG catalogue to generate BAM or CRAM mapping files. In the sec-
ond step, these mapping files are used to extract quantitative read-abundance
information in the form of a table in which the amount of reads mapped to each
MAG in each sample is displayed.

First, all MAGs need to be concatenated into a single file, which will become
the reference MAG catalogue or database.
cat {MAG.path}/*.fa.gz > {all_MAGs}.fa.gz

The MAG catalogue needs to be indexed before the mapping.
bowtie2-build \

--large-index \
--threads {threads} \
{all_MAGs}.fa.gz



84CHAPTER 13. MICROBIAL METAGENOMICS (MG) DATA PROCESSING

Then, the following step needs to be iterated for each sample, yielding a BAM
mapping file for each sample.
bowtie2 \

--time \
--threads {threads} \
-x {all_MAGs} \
-1 {input.r1} \
-2 {input.r2} \
| samtools sort -@ {threads} -o {output}

Finally, CoverM can be used to extract the required stats, such as covered
fraction per MAG per sample.
coverm genome \

-b {input} \
-s ^ \
-m count covered_fraction length \
-t {threads} \
--min-covered-fraction 0 \
> {output.count_table}

Or relative abundance per MAG per sample.
coverm genome \

-b {params.BAMs}/*.bam \
-s ^ \
-m relative_abundance \
-t {threads} \
--min-covered-fraction 0 \
> {output.mapping_rate}

Contents of this section were created by Antton Alberdi.
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Host transcriptomics (HT)
data processing

The analysis of host transcriptomic data can be conducted following two main
strategies, which depend on whether a well-annotated reference genome that
contain all gene sequences of the studied transcripts is available or not. This is
seldom the case in non-model organisms that lack complete reference genomes
with high-quality annotation of genetic information, although many reference
genome generation initiatives are rapidly increasing the number of available ref-
erence genomes. The pros and cons of using either approach have been addressed
in the literature [Lee et al., 2021].

In the following two chapters, you will find example pipelines to process host
transcriptomic data through both strategies:

• Reference-based host transcriptomics (HT) data processing
• Reference-free host transcriptomics (HT) data processing

14.1 Reference-based host transcriptomics (HT)
data processing

Quality-filtering
Fastp is a high-performance FASTQ preprocessor that can be used to clean up
raw sequencing reads from Illumina platforms. It provides various quality con-
trol, filtering, and trimming options to remove low-quality bases, contaminants,
and adapter sequences. The code provided performs a number of these steps,
including trimming of poly-G and poly-X tails, which are commonly observed
in Illumina reads, filtering reads based on quality and length, and removing
adapter sequences. The resulting cleaned reads are then written to the specified
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output files. Additionally, fastp provides comprehensive quality control reports
in both HTML and JSON formats, which can be used to assess the quality of
the input reads and the impact of the processing steps. Overall, pre-processing
raw sequencing reads with fastp is a critical step in ensuring the accuracy and
reliability of downstream bioinformatics analyses.
fastp \

--in1 {input.read1} --in2 {input.read2} \
--out1 {output.read1} --out2 {output.read2} \
--trim_poly_g \
--trim_poly_x \
--low_complexity_filter \
--n_base_limit 5 \
--qualified_quality_phred 20 \
--length_required 60 \
--thread {threads} \
--html {output.fastp_html} \
--json {output.fastp_json} \
--adapter_sequence AGATCGGAAGAGCACACGTCTGAACTCCAGTCA \
--adapter_sequence_r2 AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT

Ribosomal RNA removal
Ribodetector can be used for efficient removal of rRNA sequences from host tran-
scriptomics data, improving accuracy and reducing computational time. This
tool helps to better identify transcripts and understand gene expression in com-
plex microbiomes.
ribodetector_cpu \

-t 24 \
-l 150 \
-i {input.r1} {input.r2} \
-e rrna \
-o {output.non_rna_r1} {output.non_rna_r2}

Reference genome indexing
In order to use STAR for host transcriptomics, it is neccesary to first generates
a genome index, which can be used for multiple RNA-seq experiments.
STAR \

--runMode genomeGenerate \
--runThreadN {threads} \
--genomeDir {input} \
--genomeFastaFiles {input}/*.fna \
--sjdbGTFfile {input}/*.gtf \
--sjdbOverhang {params.readlength}
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Read mapping against reference genome
STAR (Spliced Transcripts Alignment to a Reference) is a fast and efficient
method for aligning RNA-seq reads to a reference genome. It uses a two-pass
alignment approach to detect spliced transcripts, improve accuracy and speed
up the alignment process.
STAR \

--runMode alignReads \
--runThreadN {threads} \
--genomeDir {params.genome} \
--readFilesIn {input.read1} {input.read2} \
--outFileNamePrefix {wildcards.sample} \
--outSAMtype BAM SortedByCoordinate \
--outReadsUnmapped Fastx \
--readFilesCommand zcat \
--quantMode GeneCounts

Contents of this section were created by Antton Alberdi and Raphael Eisenhofer.

14.2 Reference-free host transcriptomics (HT)
data processing

Contents will be added shortly.



88 CHAPTER 14. HOST TRANSCRIPTOMICS (HT) DATA PROCESSING



Chapter 15

Microbial
metatranscriptomics (HT)
data processing

Metatranscriptomics is a powerful tool for investigating gene expression patterns
in complex microbial communities. It allows researchers to explore the func-
tional diversity of microbial populations, providing insights into the metabolic
pathways and interactions that drive community dynamics. The analysis of mi-
crobial metatranscriptomic data can be conducted following two main strategies,
which depend on whether a reference catalogue of annotated bacterial genomes
is available or not.

In the following two chapters, you will find example pipelines to process micro-
bial metatranscriptomic data through both strategies:

• Reference-based microbial metatranscriptomics (MT) data pro-
cessing

• Reference-free microbial metatranscriptomics (MT) data pro-
cessing

15.1 Reference-based microbial metatranscrip-
tomics (MT) data processing

In reference-based metatranscriptomics, sequencing reads are aligned to a refer-
ence genome or transcriptome, allowing for the identification and quantification
of transcripts from known genes. This approach provides a more focused anal-
ysis of gene expression in microbial communities and can be particularly useful
when studying well-characterized microbial systems.
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Quality filtering
Fastp is a high-performance FASTQ preprocessor that can be used to clean up
raw sequencing reads from Illumina platforms. It provides various quality con-
trol, filtering, and trimming options to remove low-quality bases, contaminants,
and adapter sequences. The code provided performs a number of these steps,
including trimming of poly-G and poly-X tails, which are commonly observed
in Illumina reads, filtering reads based on quality and length, and removing
adapter sequences. The resulting cleaned reads are then written to the specified
output files. Additionally, fastp provides comprehensive quality control reports
in both HTML and JSON formats, which can be used to assess the quality of
the input reads and the impact of the processing steps. Overall, pre-processing
raw sequencing reads with fastp is a critical step in ensuring the accuracy and
reliability of downstream bioinformatics analyses.
fastp \

--in1 {input.r1i} --in2 {input.r2i} \
--out1 {output.r1o} --out2 {output.r2o} \
--trim_poly_g \
--trim_poly_x \
--n_base_limit 5 \
--qualified_quality_phred 20 \
--length_required 60 \
--thread {threads} \
--html {output.fastp_html} \
--json {output.fastp_json} \
--adapter_sequence CTGTCTCTTATACACATCT \
--adapter_sequence_r2 CTGTCTCTTATACACATCT

Ribosomal RNA removal
Ribodetector can be used for efficient removal of rRNA sequences from micro-
bial metatranscriptomics data, improving accuracy and reducing computational
time. This tool helps to better identify transcripts and understand gene expres-
sion in complex microbiomes.
#Code to be added here

Host genome indexing
In order to use STAR for host transcriptomics, it is neccesary to first generates
a genome index, which can be used for multiple RNA-seq experiments.
#Code to be added here

Host genome mapping
STAR (Spliced Transcripts Alignment to a Reference) can be used for efficiently
mapping host reads against a selected reference genome, and thus filter them
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out from subsequent metatranscriptomic analyses.
#Code to be added here

Generating and indexing the microbial genome catalogue
Explanations to be added here.
#Code to be added here

Mapping against the microbial genome catalogue
Explanations to be added here.
#Code to be added here

Calculate gene counts
Explanations to be added here.
#Code to be added here

15.2 Reference-free microbial metatranscrip-
tomics (MT) data processing

Contents to be added here.
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Chapter 16

Host proteomics (HP) data
processing

Proteins are highly complex molecules that require extensive processing to de-
rive meaningful biological insights from the large number of spectra generated by
mass spectrometers, in contrast to nucleic acids. In quantitative proteomics and
metabolomics, tandem mass-spectrometry (MS/MS) is the most widely used
form of data collection. MS1-level quantification and MS2-level identification
are used to identify and quantify features that elute from the chromatograph
column at an expected retention time. This is achieved through area under the
curve (AUC) or peak height calculation for each feature. The corresponding fea-
tures in HP, MP, and ME are then quantified using MS1 detection, and feature
identification is achieved through MS2 using search algorithms that compare
the recorded MS2 spectrum to a feature spectrum from a predefined database.
HP and MP databases are typically protein databases translated from genomic
data, although other strategies such as spectral libraries or mRNA databases
have also been successful. However, assembling the identified peptides into pro-
teins can be challenging, especially when dealing with redundant peptides or
spliced proteins. Recent advances in computational methods for predicting pro-
tein structures are expected to expand the reference databases for proteomics.
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Chapter 17

Microbial metaproteomics
(MP) data processing

Proteins are highly complex molecules that require extensive processing to de-
rive meaningful biological insights from the large number of spectra generated by
mass spectrometers, in contrast to nucleic acids. In quantitative proteomics and
metabolomics, tandem mass-spectrometry (MS/MS) is the most widely used
form of data collection. MS1-level quantification and MS2-level identification
are used to identify and quantify features that elute from the chromatograph
column at an expected retention time. This is achieved through area under the
curve (AUC) or peak height calculation for each feature. The corresponding fea-
tures in HP, MP, and ME are then quantified using MS1 detection, and feature
identification is achieved through MS2 using search algorithms that compare
the recorded MS2 spectrum to a feature spectrum from a predefined database.
HP and MP databases are typically protein databases translated from genomic
data, although other strategies such as spectral libraries or mRNA databases
have also been successful. However, assembling the identified peptides into pro-
teins can be challenging, especially when dealing with redundant peptides or
spliced proteins. Recent advances in computational methods for predicting pro-
tein structures are expected to expand the reference databases for proteomics.
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Part V

STATISTICAL
PROCEDURES
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Chapter 18

About statistics

Statistics is probably the most challenging step of holo-omic studies, due to two
main factors: the extreme complexity of the data, often containing thousands
of features, and the limited sample size, often in the realm of the dozens of sam-
pling units. This combination renders many holo-omic datasets rather statistics
unfriendly.

A step-by-step approach
In this workbook we strongly encourage researchers to proceed step-by-step
when dealing with holo-omics data and biological questions.

Initial quantitative exploration of omic layers

The analysis of any multi-omic data should begin with independent analysis of
each omic layer to learn about its structure and variability before jumping to
multi-omic data integration.

• Data transformations: multivariate datasets consist of different data
types (e.g., presence-absence of taxa, counts of genes, community-level
metabolic capacity index of a function, concentrations of metabolites
across samples) that may require specific transformation before applying
statistical techniques.

• Unsupervised exploration of omic layers: include exploratory tech-
niques, such as cluster analysis and ordination-based visualisation meth-
ods, which reveal the structure and main patterns of the omic datasets
without prior information about experimental design. These procedures
might reveal that the observations are structured into meaningful groups
or that variables can be reduced to fewer dimensions.

• Supervised analysis of omic layers: this type of analyses incorporate
information of experimental design and aim at testing and estimating the
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effects of the experimental factors (e.g., dietary treatment, drug admin-
istration) or variables of interest (e.g., age of the experimental subjects,
geographic location of studied populations) on different omic layers.

Multi-omic data integration

When it comes to multi-omic data integration, the approaches can be broadly
categorised into two types: multi-staged analysis and meta-dimensional or si-
multaneous analysis.

• Multi-staged integration: leverages the central dogma of molecular
biology to assume that the variation in omic datasets is hierarchical, such
that variation in DNA leads to variation in RNA and so on to determine
the phenotype

• Meta-dimensional integration: considers the possibility that the phe-
notype is the product of the combination of variation across all omic layers,
with the presence of complex inter-omic interactions.

All statistical analyses included in the Holo-omics workbook are conducted
in R environment. You can find the details to set-up your R environment in the
section Prepare your R environment.

18.1 Prepare your R environment
All statistical analyses included in the Holo-omics workbook are conducted
in R environment [R Development Core Team, 2008]. R is a free software
environment for statistical computing and graphics. It compiles and runs on a
wide variety of UNIX platforms, Windows and MacOS, and in order to use it,
R or RStudio must be installed in your local computer or remote server.

Required packages
In order to reproduce the analyses shown in the workbook, a rather long list of R
packages must be installed. Packages are the fundamental units of reproducible
R code, which include reusable R functions, the documentation that describes
how to use them, and sample data.

• ape
• DESeq2
• distillR
• ggplot2
• tidyverse
• vegan
• (…)

https://en.wikipedia.org/wiki/R_(programming_language)
https://cran.r-project.org/
https://posit.co/downloads/
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Package installation
Packages are installed programatically using three main ways: through CRAN,
Bioconductor or Github.

Install package from CRAN

CRAN is a network of ftp and web servers around the world that store identical,
up-to-date, versions of code and documentation for R. Packages stored in CRAN
can be installed using the following code:
install.packages("package_name")
#e.g.
install.packages("vegan")

Install package from Bioconductor

Bioconductor is a free, open source and open development software project for
the analysis and comprehension of genomic data generated by wet lab experi-
ments in molecular biology. Packages included in Bioconductor can be installed
using the following code:
if (!require("BiocManager", quietly = TRUE))

install.packages("BiocManager")
BiocManager::install("package_name")
#e.g.
BiocManager::install("DESeq2")

Install package from Github

GitHub is a code hosting platform for version control and collaboration. Pack-
ages stored in R can be installed using the following code after installing the
package devtools:
library(devtools)
install_github("github_repository_name_of_the_package")
#e.g.
install_github("anttonalberdi/distillR")

18.2 Create / clone a Github repository
RStudio provides the possibility to work with version-control projects that en-
able multiple users (e.g., collaborators or supervisor-student) to access and con-
tribute to a project. In order to do so, one needs to first create a code repository
in Github, or access an already existing repository, and create a version-control
project in RStudio.

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://www.bioconductor.org/packages/release/bioc/
https://github.com/
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Install git in you local computer
The connection between RStudio and Github is done through the version control
system Git. Instructions to download and install the software are available here:
https://git-scm.com/downloads.

Create a Github repository
If you want to work on a new project, create a new repository in your Github
dashboard of repositories or in any of the organisational accounts you belong to.
When creating the repository, accept the option for generating a README.md
document to serve as index.

Create a version-control project
Once your repository is created, you need to create a version-control R project
linked to that repository in your local computer. Follow the following instruc-
tions to do so:

1. Open RStudio.
2. Click New Project
3. Select the Version Control option in the first pop-up window, and the

option Git in the second page.
4. Go to your repository page at Github and copy the git url after clicking

the < > Code green button. The link should look something like this:
https://github.com/holo-omics/example.git

5. Paste the repository URL you just copied in the Repository URL field.
Leave the Project directory name empty, and select the local directory
(folder) where you want to create a local copy of the Github repository.

6. Click Create Project.

This procedure will generate an R project in the a folder with the name of the
Github repository within the desired directory. The main difference of such a
version-control project and a regular R project is the connection with Github
through Git. If you open the project in RStudio, you will find a new tab called
Git, which you can use to communicate with Github.

Set-up RStudio-Github connection
In order to be able to commit and push changes to Github, you need to configure
git and RStudio.

Set-up git config

First, set-up git config using the following commands. Make sure you modify
‘Your Name’ and ‘your@email.com’ before running the scripts below in your
terminal.

https://git-scm.com/
https://git-scm.com/downloads
https://github.com/holo-omics/example.git
mailto:your@email.com
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git config --global user.name 'Your Name'
git config --global user.email 'your@email.com'

Generate a Github access token

Second, you need to generate a personal access token you will need to use when
first pushing changes to Github. To generate the token, access your personal
Github account and navigate through Settings (you will find it by clicking your
avatar) > Developer settings (you will find it at the very bottom of the left
menu) > Personal access tokens > Generate new token.

Connect RStudio to Github

Finally, you will need to modify something in your project to push the first
change to Github and configure the connection between RStudio and Github.

1. In RStudio open the README.md file, make any change you wish and
save it.

2. Any file within the project that has been edited will appear in the Git
tab with a M - Modified status.

3. Click the checkboxes of the files you want to commit (in this case the
README.md file) to stage the file and click Commit.

4. In the pop-up window, add a descriptive short message to the commit,
and click Commit.

5. Click Push to upload the changes to Github. The first time you push,
RStudio will request your Github username and password. Note that
instead of your Github access password, you need to use the access
token instead.

These actions should enable you to connect RStudio to Github and to push
changes from your local version of the repository to Github.

Work with version control

Once the initial commit is pushed, then you are ready to work with your version-
control R project. Keep in mind that in a version-control project, the same
project might contain multiple versions, including the one in Github and the
ones in the local computers of the collaborators.

• To access the latest version available in Github use the Pull button.
• To update the Github version, use Commit followed by Push.

To learn more about Git and version control, check the many great tutori-
als available on the internet, for example: - https://ourcodingclub.github.
io/tutorials/git/ - https://www.freecodecamp.org/news/git-and-github-the-
basics/

https://ourcodingclub.github.io/tutorials/git/
https://ourcodingclub.github.io/tutorials/git/
https://www.freecodecamp.org/news/git-and-github-the-basics/
https://www.freecodecamp.org/news/git-and-github-the-basics/
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Chapter 19

Single omic analyses

Multi-omic data analysis should start by evaluating each individual layer sep-
arately to gain insight into its structure and variability, before combining all
layers. Despite the varying nature of the seven omic layers discussed in this
guidebook, they all possess the common attribute of being multivariate, mean-
ing they consist of multiple features, such as genomic variants, genes, metabolic
pathways, proteins or metabolites, collected from multiple observations. This
section contains the following three chapters:

• Data transformations: multivariate datasets consist of different data
types (e.g., presence-absence of taxa, counts of genes, community-level
metabolic capacity index of a function, concentrations of metabolites
across samples) that may require specific transformation before applying
statistical techniques.

• Unsupervised exploration of omic layers: include exploratory tech-
niques, such as cluster analysis and ordination-based visualisation meth-
ods, which reveal the structure and main patterns of the omic datasets
without prior information about experimental design. These procedures
might reveal that the observations are structured into meaningful groups
or that variables can be reduced to fewer dimensions.

• Supervised analysis of omic layers: this type of analyses incorporate
information of experimental design and aim at testing and estimating the
effects of the experimental factors (e.g., dietary treatment, drug admin-
istration) or variables of interest (e.g., age of the experimental subjects,
geographic location of studied populations) on different omic layers.
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Chapter 20

Data transformations

Before conducting any analysis on multivariate datasets, it is important to note
that the different data types present (such as the presence/absence of taxa, gene
counts, metabolic capacity indices, and metabolite concentrations) may need to
undergo transformation. Data transformation is the process of changing the
scale or distribution of data in order to meet the assumptions of a statistical
model or to improve the interpretability of the data. Transformations can be
applied to individual variables or to the entire dataset, and can involve a vari-
ety of mathematical operations, such as scaling, centring, and rescaling. Data
transformations can be categorised by the objective they follow:

• Transformations to account for statistical assumptions
• Transformations to account for compositional data
• Transformations to account for scaling

20.1 Transformations to account for statistical
assumptions

Most of the statistical techniques applied to omic datasets have a set of re-
quirements, known as assumptions, which is necessary the aalysed data meet
for statistical models to make accurate and unbiased predictions based on the
available data. Violating these assumptions can lead to biased and inaccurate re-
sults, and statistical tests and methods should be selected and applied carefully,
taking into account the specific assumptions required for each analysis.

The specific assumptions required vary depending on the type of statistical
analysis being performed, but some common examples include:

1. Normality: The assumption that the distribution of the data is approxi-
mately normal.
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2. Independence: The assumption that the observations are independent
of each other.

3. Homogeneity of variance: The assumption that the variance of the
data is the same across all levels of the independent variable.

4. Linearity: The assumption that there is a linear relationship between
the independent and dependent variables.

5. Randomness: The assumption that the data was obtained randomly and
that there are no systematic biases in the sample selection process.

6. Stationarity: The assumption that the statistical properties of the data
do not change over time.

Unfortunately, biological datasets rarely meet these assumptions. However, orig-
inal values can be transformed so that the modified values conform better to
those assumptions. Some of the most typical transformations include:

1. Log transformation: This transformation is used to reduce the effect
of extreme values in the data and to stabilize the variance. It is often
used when the data is highly skewed or when the relationship between the
variables is multiplicative rather than additive.

2. Square root transformation: This transformation is similar to the log
transformation, but is less extreme. It is often used when the data is
moderately skewed and when the variance increases with the mean.

3. Box-Cox transformation: This is a more general transformation that
allows for a range of power transformations to be applied to the data. It is
used when the data is highly skewed or when the variance is not constant
across the range of values.

4. Arcsine transformation: This transformation is used for data that is
bounded between 0 and 1, such as proportions or percentages. It is used
to stabilise the variance and to improve the normality of the data.

5. Rank transformation: This transformation involves converting the data
to ranks, which can be useful for non-parametric tests. It is often used
when the data is highly skewed or when there are outliers.

Transforming data to meet normality assumption
In this example, we first load the multivariate dataset and use the Shapiro-
Wilk test to check for normality. We then loop through each variable in the
dataset and apply the Box-Cox transformation using the boxcox function from
the MASS package if the Shapiro-Wilk test indicates that the variable is not
normally distributed. Finally, we use the Shapiro-Wilk test again to check for
normality of the transformed data.
# Load the multivariate dataset
data <- read.csv("mydata.csv")

# Check for normality using Shapiro-Wilk test
shapiro.test(data)
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# Apply Box-Cox transformation to each variable
library(MASS)
data_transformed <- data
for (i in 1:ncol(data)) {
if (shapiro.test(data[,i])$p.value < 0.05) { # if not normal
data_transformed[,i] <- boxcox(data[,i]) # apply Box-Cox transformation

}
}

# Check for normality again using Shapiro-Wilk test
shapiro.test(data_transformed)

20.1.1 Transformations to account for compositional data
When dealing with multi-omic datasets, it’s important to determine if the mea-
surements represent absolute or relative values. While HG provides qualitative
information about host genomes, MG, HT, and MT provide quantitative infor-
mation that’s dependent on the amount of sequencing performed and thus are
compositional. Consequently, raw quantitative values of genome abundance or
gene expression across samples cannot be compared directly. To address this,
the most common solution is to transform the raw abundance values into rela-
tive abundance data for comparison. However, this transformation reduces the
independence of individual variables, which is an assumption for many statis-
tical methods. An alternative is using ratio transformations like the centred
log-ratio, which better suit compositional data analysis by removing the effect
of the constant-sum constraint on the covariance and correlation matrices.

Transforming data using centred log-ratio

In this example, we first load the multivariate dataset and then apply the CLR
transformation using the clr() function from the compositions package. The
CLR transformation is a commonly used method for analyzing compositional
data, where the data represents proportions or percentages that add up to a
constant sum. The CLR transformation is designed to remove the constant
sum constraint and make the data amenable to standard multivariate statistical
methods.

The resulting data_transformed object will be a transformed version of the
original dataset, with each variable now representing the logarithm of the ratio
between that variable and the geometric mean of the other variables. Note that
the CLR transformation assumes that the data is non-negative, so it may not
be appropriate for all types of multivariate data.
# Load the multivariate dataset
data <- read.csv("mydata.csv")
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# Apply CLR transformation using the compositions package
library(compositions)
data_transformed <- clr(data)

# View the transformed data
head(data_transformed)

20.1.2 Transformations to account for scaling
It’s important to keep in mind that scaling can also impact the results when
analsing multi-omic data. For instance, in ME data, certain metabolites such as
ATP may have much higher concentrations than other important metabolites
like signaling molecules, potentially overshadowing significant differences in the
less abundant yet meaningful metabolites. In Transcriptomics, transcript length
biases may also cause similar distortions. One solution is to standardise the
features by using transformations like z-score normalisation, but this can amplify
the influence of measurement error that is typically higher for less abundant
features.

Transforming data using z-score normalisation

In this example, we first load the dataset and then use the apply() function to
apply the z-score normalization to each variable in the dataset. The apply()
function applies a function to either the rows or columns of a matrix, and the
2 argument specifies that we want to apply the function to the columns (i.e.,
variables) of the dataset. The function applied to each column calculates the
z-score of each observation by subtracting the mean of the variable from each
observation and dividing by the standard deviation of the variable. This centers
the data around 0 and scales it to have a standard deviation of 1. The resulting
data_norm object will be a normalized version of the original dataset, with each
variable now having a mean of 0 and a standard deviation of 1.
# Load the dataset
data <- read.csv("mydata.csv")

# Apply z-score normalization to each variable
data_norm <- apply(data, 2, function(x) (x - mean(x)) / sd(x))

# View the normalized data
head(data_norm)



Chapter 21

Unsupervised exploration

Unsupervised methods in multi-omic data analysis involve techniques for ex-
ploring the structure and patterns of the data without prior knowledge of the
experimental design. These include cluster analysis and visualisation meth-
ods based on ordination. These procedures can reveal meaningful groupings
among observations or allow for reducing the complexity of the data by reduc-
ing the number of dimensions. Researchers can then use the results from these
exploratory techniques in further multi-omic data integration. It’s crucial to
properly pre-process the data and choose the appropriate association coefficient
when computing these methods, as this has a significant impact on the final
outcome.

• Cluster analysis
• Dimension reduction and ordination

21.1 Cluster analysis
Clustering procedures group features or observations into homogeneous sets by
minimising within-group and maximising among-group distances

21.1.1 Hierarchical clustering
Hierarchical clustering produces a stratified organisation of features or observa-
tions where relatively similar objects are grouped together. The clustering can
be performed using different criteria to measure the distance between clusters,
which will affect the final outcome of the analysis (e.g., single linkage, complete
linkage, average linkage and Ward’s minimum variance).
# Load the dataset
data <- read.csv("mydata.csv")
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# Perform hierarchical clustering
dist_matrix <- dist(data) # calculate distance matrix
hc <- hclust(dist_matrix) # perform hierarchical clustering

# Plot dendrogram of clustering
plot(hc, hang=-1)

A useful exploratory analysis to reveal general patterns in an omic layer can be
obtained by simultaneous application of hierarchical clustering to the rows and
columns of the data matrix, and visualising the results in a heatmap.
# Load the dataset
data <- read.csv("mydata.csv", row.names=1)

# Perform hierarchical clustering of rows and columns
row_clusters <- hclust(dist(data))
col_clusters <- hclust(dist(t(data)))

# Plot heatmap with row and column dendrograms
library(gplots)
heatmap.2(as.matrix(data),

Rowv=row_clusters,
Colv=col_clusters,
scale="row",
dendrogram="both",
key=TRUE,
keysize=1.5,
col=redgreen(75))

21.1.2 Disjoint clustering
Disjoint clustering techniques aim at separating the objects into individual, usu-
ally mutually exclusive, and in most cases, unconnected clusters. K-means
clustering is one of the most typical algorithms where objects are assigned
to k clusters using an iterative procedure that minimises the within-clusters
sums of squares. Other available clustering methods include twinspan, self-
organising maps, dbscan and Dirichlet multinomial mixtures (DMM). DMM
were specifically developed to analyse MG data but can be equally useful for
other sequencing-based omic datasets.
# Load the dataset
data <- read.csv("mydata.csv")

# Perform K-means clustering
k <- 3 # number of clusters
km <- kmeans(data, k)

# View the cluster assignments
head(km$cluster)
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# Load the package
library(DirichletMultinomial)

# Load the dataset
data <- read.csv("mydata.csv")

# Fit Dirichlet multinomial mixture model
model <- DMM(data, K=3, alpha=1, beta=1)

# View the cluster assignments
head(model$Z)

21.2 Dimension reduction and ordination
Ordination is a method complementary to data clustering, which enables dis-
playing differences among samples graphically through reducing the dimensions
of the original data set, so that similar objects are near and dissimilar objects
are farther from each other.

21.2.1 Principal Component Analysis (PCA)
Principal component analysis (PCA) is one of the most widely applied methods
for ordination. PCA generates new synthetic variables (principal components)
that are linear combinations of the original variables and capture as much vari-
ance of the original data as possible. The principal components are orthogonal
to each other and correspond to the successive dimensions of maximum vari-
ance of the scatter of points. The distance preserved among objects is euclidean
and the relationships among variables are linear, thus PCA should generally be
applied after appropriate transformations.
# Load the dataset
data <- read.csv("mydata.csv")

# Perform PCA
pca <- prcomp(data, scale = TRUE)

# View the results
summary(pca)

# Plot the results
plot(pca, type = "l")

21.2.2 Principal Coordinate Analysis (PCoA)
Principal Coordinate Analysis (PCoA) is a multivariate analysis technique used
to visualise and explore the patterns of variation in multivariate data. It is
similar to Principal Component Analysis (PCA) but is specifically designed for



114 CHAPTER 21. UNSUPERVISED EXPLORATION

distance-based data. PCoA transforms a distance matrix into a set of coordi-
nates that can be plotted in two or three dimensions, allowing for visualisation
of the relationships between samples based on their dissimilarity.

In multi-omics research, PCoA can be used to analyse and visualise the rela-
tionships between samples based on their similarity or dissimilarity in multiple
omics data types, such as gene expression, metabolomics, or proteomics. By
performing PCoA on these data types separately and then comparing the re-
sults, researchers can gain insight into how different omics layers contribute to
the overall variation between samples. Additionally, PCoA can be used to iden-
tify groups or clusters of samples with similar omics profiles, which can provide
insight into underlying biological processes or disease states. Overall, PCoA is
a powerful tool for exploring and visualising the complex relationships between
multiple omics data types in multi-omics research.
# Load the distance matrix
dist_mat <- read.csv("mydistances.csv", row.names = 1)

# Perform PCoA
pcoa <- cmdscale(dist_mat, k = 2, eig = TRUE, add = TRUE)

# View the results
summary(pcoa)

# Plot the results
plot(pcoa$points, type = "n", xlab = "PCo1", ylab = "PCo2")
text(pcoa$points, labels = rownames(pcoa$points))

21.2.3 Non-metric Multidimensional Scaling (NMDS)
Non-metric Multidimensional Scaling (NMDS) is a multivariate analysis tech-
nique used to visualize and explore the patterns of variation in multivariate
data. It is similar to Principal Coordinate Analysis (PCoA) but is more flex-
ible in that it can handle non-linear relationships between variables. NMDS
transforms a distance matrix into a set of coordinates that can be plotted in
two or three dimensions, allowing for visualisation of the relationships between
samples based on their dissimilarity. Unlike PCoA, NMDS does not assume
a linear relationship between the distance matrix and the coordinates, making
it a more powerful tool for analysing complex and non-linear relationships in
multivariate data.

In multi-omics research, NMDS can be used to analyse and visualise the rela-
tionships between samples based on their similarity or dissimilarity in multiple
omics data types, such as gene expression, metabolomics, or proteomics. By
performing NMDS on these data types separately and then comparing the re-
sults, researchers can gain insight into how different omics layers contribute
to the overall variation between samples. Additionally, NMDS can be used to
identify groups or clusters of samples with similar omics profiles, which can
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provide insight into underlying biological processes or disease states. Overall,
NMDS is a powerful tool for exploring and visualising the complex relationships
between multiple omics data types in multi-omics research, particularly when
the relationships between variables are non-linear.
# Load the dataset
data <- read.csv("mydata.csv", row.names = 1)

# Perform NMDS
library(vegan)
nmds <- metaMDS(data, distance = "bray")

# View the results
summary(nmds)

# Plot the results
plot(nmds$points, type = "n", xlab = "NMDS1", ylab = "NMDS2")
text(nmds$points, labels = rownames(nmds$points))

21.2.4 t-Distributed Stochastic Neighbour Embedding (t-
SNE)

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimen-
sionality reduction technique used to visualise high-dimensional data in a
low-dimensional space. t-SNE is particularly useful when exploring complex
and nonlinear relationships between variables, and can be applied to various
types of data including gene expression, proteomics, and metabolomics data.
t-SNE works by first constructing a probability distribution over pairs of
high-dimensional objects, such as genes or proteins, and then constructing
a similar probability distribution over pairs of low-dimensional points. The
technique then optimizes these probability distributions to minimise the
divergence between them, resulting in a low-dimensional representation of the
high-dimensional data.

In multi-omics research, t-SNE can be used to analyse and visualise the relation-
ships between samples based on their omics profiles. By performing t-SNE on
multiple omics data types separately and then comparing the results, researchers
can gain insight into how different omics layers contribute to the overall varia-
tion between samples. Additionally, t-SNE can be used to identify clusters or
groups of samples with similar omics profiles, which can provide insight into
underlying biological processes or disease states. Overall, t-SNE is a powerful
tool for visualising high-dimensional data in a low-dimensional space, allowing
researchers to explore and analyse complex relationships in multi-omics research.
# Load the dataset
data <- read.csv("mydata.csv", row.names = 1)

# Perform t-SNE
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library(Rtsne)
tsne <- Rtsne(data, dims = 2, perplexity = 30, verbose = TRUE)

# View the results
summary(tsne)

# Plot the results
plot(tsne$Y, col = "blue", pch = 19, xlab = "t-SNE1", ylab = "t-SNE2")

21.2.5 Uniform manifold approximation and projection
(UMAP)

Uniform Manifold Approximation and Projection (UMAP) is a non-linear di-
mension reduction technique used to visualise high-dimensional data in a low-
dimensional space. It is similar to t-Distributed Stochastic Neighbour Embed-
ding (t-SNE) but is faster and more scalable, making it useful for larger datasets.
UMAP works by constructing a fuzzy topological representation of the high-
dimensional data and then optimising a low-dimensional representation that
preserves the structure of this topological representation. This results in a low-
dimensional representation of the high-dimensional data that preserves complex
relationships between variables.

In multi-omics research, UMAP can be used to analyse and visualise the relation-
ships between samples based on their omics profiles. By performing UMAP on
multiple omics data types separately and then comparing the results, researchers
can gain insight into how different omics layers contribute to the overall vari-
ation between samples. Additionally, UMAP can be used to identify clusters
or groups of samples with similar omics profiles, which can provide insight into
underlying biological processes or disease states. Overall, UMAP is a powerful
tool for visualising high-dimensional data, particularly for large and complex
datasets.
# Load the dataset
data <- read.csv("mydata.csv", row.names = 1)

# Perform UMAP
library(umap)
umap_result <- umap(data, n_components = 2, n_neighbors = 30)

# View the results
summary(umap_result)

# Plot the results
plot(umap_result$layout, col = "blue", pch = 19, xlab = "UMAP1", ylab = "UMAP2")
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Supervised analysis

The difference between supervised and unsupervised analyses in omic studies
lies in the incorporation of experimental design information. Unlike unsuper-
vised methods, supervised analyses incorporate prior information about the ex-
perimental design, making them useful for testing the effects of experimental
factors and associating omic data with phenotypic features. Supervised analyses
can be divided into two types: regression and classification.

Regression problems involve predicting a numeric variable or matrix based
on the omic data and experimental factors, such as treatment or subject char-
acteristics.

Classification problems involve classifying observations into groups based on
their features across different omic layers.

22.1 Regression methods
Regression methods aim to model the relationship between the quantitative
metrics of the omic features and the response variable. Regression methods
are commonly used in supervised analysis of omic data to identify associations
between the expression levels of different genes, metabolites, or other features
and a particular outcome or response variable, such as a disease state or an
experimental treatment.

22.1.1 PERMANOVA
PERMANOVA is a statistical method that tests for significant differences be-
tween groups in multivariate data by comparing the distribution of distance-
based similarity matrices. This method can be used to identify biomarkers that
differ significantly between groups, such as disease states or treatment groups,
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and determine whether there are significant differences in the overall pattern of
gene expression, methylation, or other omic features between the groups.
library(vegan)

# simulate gene expression data with 100 samples and 1000 genes
set.seed(123)
exprs <- matrix(rnorm(100*1000), nrow = 100, ncol = 1000)

# create a grouping variable with 2 groups
group <- rep(c("control", "treatment"), each = 50)

# calculate Euclidean distance matrix from gene expression data
dist_matrix <- vegdist(t(exprs), method = "euclidean")

# perform PERMANOVA analysis
permanova_results <- adonis(dist_matrix ~ group)

# view PERMANOVA results
permanova_results

22.1.2 ANOSIM

ANOSIM is a nonparametric statistical method that tests for significant differ-
ences in similarity between two or more groups of samples based on dissimilarity
matrices. It is used to compare the dissimilarity between groups of samples
based on their gene expression, metabolomics, or other omic data. The aim of
ANOSIM is to determine if the differences in omic profiles between groups are
significant and can be used to distinguish between groups.
library(vegan)

# Load gene expression data
data <- read.csv("gene_expression_data.csv", row.names = 1)

# Define grouping variable
group <- c(rep("Group 1", 5), rep("Group 2", 5))

# Calculate dissimilarity matrix
dissimilarity <- vegdist(data)

# Perform ANOSIM
result <- anosim(dissimilarity, group)

# View ANOSIM results
result
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22.1.3 Redundancy analysis (RDA)
Redundancy Analysis (RDA) is a multivariate statistical technique that identi-
fies the linear relationships between a response variable and a set of explanatory
variables. It is an extension of Principal Component Analysis (PCA) that can
handle both continuous and categorical variables. RDA is used to identify the
genes, metabolites, or other omic variables that are most strongly associated
with a specific outcome or response variable, such as a disease state or drug re-
sponse. It can also be used to visualise the relationship between the explanatory
and response variables.
library(vegan)

# Load gene expression data
data <- read.csv("gene_expression_data.csv", row.names = 1)

# Load disease state data
disease <- read.csv("disease_state.csv", row.names = 1)

# Perform RDA
result <- rda(data, disease)

# View RDA results
result

# Plot RDA biplot
plot(result, display = "biplot")

22.1.4 Canonical Correspondence Analysis (CCA)
Canonical Correspondence Analysis (CCA) is a multivariate statistical tech-
nique that explores the relationship between a set of explanatory variables and
a set of response variables. It is an extension of Correspondence Analysis (CA)
that can handle both continuous and categorical variables. CCA is used to
identify the genes, metabolites, or other omic variables that are most strongly
associated with a specific outcome or response variable, such as a disease state
or drug response. It can also be used to visualise the relationship between the
explanatory and response variables.
library(vegan)

# Load gene expression data
data <- read.csv("gene_expression_data.csv", row.names = 1)

# Load disease state data
disease <- read.csv("disease_state.csv", row.names = 1)

# Perform CCA
result <- cca(data, disease)
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# View CCA results
result

# Plot CCA biplot
plot(result, display = "biplot")

22.1.5 Generalised linear modelling (GLM)
Generalised linear modelling (GLM) is a statistical framework that allows for
the analysis of a wide range of response variables, including binary, count, and
continuous data. In the context of supervised analysis of single omic layers,
GLM can be used to identify associations between a specific response variable,
such as disease status, and the omic data, such as gene expression or metabolite
levels.

The first step in using GLM for supervised analysis of omic data is to select the
appropriate distribution for the response variable. For example, if the response
variable is binary (e.g., healthy vs. diseased), then a binomial distribution can
be used. If the response variable is a count (e.g., the number of mutations), then
a Poisson or negative binomial distribution can be used. If the response variable
is continuous (e.g., expression levels), then a Gaussian distribution can be used.
Once the appropriate distribution is selected, a GLM can be constructed by
specifying a linear relationship between the response variable and the omic data,
using one or more explanatory variables. The explanatory variables can be
selected based on prior knowledge or through a variable selection process, such
as forward or backward selection. The GLM model can then be fit to the
data using maximum likelihood estimation or other methods. After fitting the
GLM model, the significance of each explanatory variable can be assessed using
hypothesis testing, such as Wald tests or likelihood ratio tests. The explanatory
variables that are found to be significant can then be interpreted as predictors
of the response variable.

Overall, GLM can be a useful tool for supervised analysis of single omic layers
because it allows for the identification of specific predictors of a response vari-
able, such as disease status, and can handle a wide range of response variable
distributions. However, it is important to carefully select the appropriate dis-
tribution and explanatory variables to ensure the validity and accuracy of the
model.
# Load required packages
library(edgeR) # for differential expression analysis
library(glmnet) # for regularization and variable selection

# Load example data
data <- read.table("example_omic_data.txt", header=TRUE, sep="\t")

# Define the response variable
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response <- factor(data$disease_status)

# Define the explanatory variables
explanatory <- as.matrix(data[,2:ncol(data)]) # omic data

# Perform differential expression analysis to identify significant variables
dge <- DGEList(counts=explanatory, group=response)
dge <- calcNormFactors(dge)
design <- model.matrix(~response)
fit <- glmQLFit(dge, design)
qlf <- glmQLFTest(fit, coef=2)
significant_vars <- topTags(qlf, n=100)$table$ID # select top 100 significant variables

# Fit a GLM model with regularization and variable selection
fit.glm <- cv.glmnet(x=explanatory[,significant_vars], y=response, family="binomial")
plot(fit.glm)

# Identify the most important variables
coef(fit.glm, s=fit.glm$lambda.min)

22.1.6 Generalised linear mixed modelling (GLMM)
Generalised linear mixed models (GLMMs) are an extension of GLMs that al-
low for the analysis of data with non-independent errors, such as clustered or
longitudinal data. GLMMs incorporate random effects, which account for the
correlation between observations within groups or over time, and fixed effects,
which represent the relationships between the response and explanatory vari-
ables. GLMMs are widely used in omics data analysis, particularly for the
analysis of longitudinal or repeated measures data, and for the integration of
multiple omics data layers.

In GLMMs, the response variable y is related to the explanatory variables x
through a link function g and a linear predictor:

g(E[y | x]) = x * beta + Z * b

where beta are the fixed effects coefficients, b are the random effects coefficients,
Z is the design matrix for the random effects, and E[y | x] is the expected value
of the response variable given the explanatory variables x. The random effects
account for the correlation between observations within groups or over time,
and are assumed to be normally distributed with mean 0 and covariance matrix
D. The link function g specifies the relationship between the expected value
of the response variable and the linear predictor. The choice of link function
depends on the nature of the response variable and can be any member of the
exponential family of distributions.

GLMMs are fitted using maximum likelihood estimation, which involves op-
timising the likelihood function with respect to the fixed and random effects
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coefficients, as well as the covariance matrix of the random effects. The like-
lihood function takes into account the correlation structure of the data and is
typically evaluated using numerical methods such as the Laplace approximation
or Monte Carlo Markov Chain (MCMC) methods.

GLMMs can be used for a wide range of applications in omics data analysis,
including the analysis of longitudinal or repeated measures data, the integra-
tion of multiple omics data layers, the analysis of data with non-independent
errors, and the modelling of gene-environment interactions. However, GLMMs
can be computationally intensive and require careful consideration of the cor-
relation structure of the data and the appropriate choice of link function and
distribution.
# Load the lme4 package
library(lme4)

# Load example data
data <- read.table("example_omic_data.txt", header=TRUE, sep="\t")

# Convert the Treatment treatment to a factor
data$Treatment <- as.factor(data$Treatment)

# Split the data into training and testing sets
set.seed(123)
train_indices <- sample(nrow(data), 0.7*nrow(data))
train_data <- data[train_indices,]
test_data <- data[-train_indices,]

# Fit a GLMM with random intercept and slope
model <- glmer(Treatment ~ . + (1 | Sepal.Length), data = train_data, family = binomial)

# Predict on the test data
test_data$predicted <- predict(model, newdata = test_data, type = "response")

# Calculate the accuracy of the predictions
accuracy <- sum(test_data$predicted > 0.5 & test_data$Treatment == "versicolor" |

test_data$predicted <= 0.5 & test_data$Treatment == "setosa" |
test_data$Treatment == "virginica") / nrow(test_data)

# Print the accuracy
cat(sprintf("Accuracy: %.2f%%\n", accuracy*100))

22.2 Classification methods
Classification methods aim to learn a model that can predict the class labels of
new samples based on their omic profiles. Classification methods are commonly
used in supervised analysis of omic data to classify samples into different cate-
gories based on their expression levels of genes, metabolites, or other features.
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Overall, classification methods aim to learn a model that can accurately predict
the class labels of new samples based on their omic profiles, and can be useful
for identifying biomarkers that are predictive of disease or treatment response.

22.2.1 Random Forests (RF)
Random forests are an ensemble of decision trees that are trained on boot-
strapped samples of the data and a random subset of the features, to reduce
overfitting and improve accuracy.
library(randomForest)

# Load the dataset
data <- read.csv("mydata.csv")

# Split the data into training and test sets
trainIndex <- sample(1:nrow(data), 0.7*nrow(data))
trainData <- data[trainIndex, ]
testData <- data[-trainIndex, ]

# Train the random forest classifier
rf <- randomForest(class ~ ., data=trainData, ntree=500, importance=TRUE)

# Make predictions on the test data
predictions <- predict(rf, testData)

# Evaluate the performance of the classifier
confusionMatrix(predictions, testData$class)

22.2.2 Support Vector Machines (SVM)
Support vector machines (SVMs) aim to find a hyperplane that maximally sep-
arates the samples belonging to different classes in the feature space, and can
handle both linear and nonlinear relationships between the features and the
response variable.
library(e1071)

# Load the dataset
data <- read.csv("mydata.csv")

# Split the data into training and test sets
trainIndex <- sample(1:nrow(data), 0.7*nrow(data))
trainData <- data[trainIndex, ]
testData <- data[-trainIndex, ]

# Train the SVM classifier
svm <- svm(class ~ ., data=trainData, kernel="radial", cost=1)
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# Make predictions on the test data
predictions <- predict(svm, testData)

# Evaluate the performance of the classifier
confusionMatrix(predictions, testData$class)
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Multi-omic integration

Multi-omic data integration can be broadly classified into two categories: multi-
staged analysis and meta-dimensional analysis. In the multi-staged approach,
the data analysis is divided into multiple steps, where two omic layers are linked
at each step, and the final step relates the relevant omic layers with the outcome
of interest. This method takes advantage of the hierarchical nature of molecular
biology’s central dogma, assuming that variations in omic datasets occur in a
hierarchical manner, with changes in DNA leading to changes in RNA, and so
on. On the other hand, meta-dimensional analysis involves analyzing all omic
datasets in a single analysis, which encompasses the entire range of features
simultaneously, and enables the assessment of inter-omic interactions.

• Multi-staged data integration:
• Meta-dimensional data integration
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Chapter 24

Multi-staged omics
integration

Multi-stage omics integrations leverages the structure of biological organisation
to analyse the data in multiple steps, relating two omic layers at a time, with
the final step linking the relevant omic layers with the outcome of interest. In
the past, the predominant method for integrated analysis of biological data was
the multi-staged approach. This approach relied heavily on traditional statis-
tical tools and hypothesis testing approximations. The multi-staged approach
is advantageous in that it enables the systematic linking of multi-omic datasets
in a stepwise manner, allowing for the development of knowledge that can be
later used to test causally-oriented hypotheses. Furthermore, this approach is
better suited to account for the biological asymmetries between different omic
datasets.

One popular example of multi-staged integration is the three-stage or triangle
method. In the first stage, SNPs are associated with the outcome of interest
and filtered based on a genome-wide significance threshold. Then, SNPs signif-
icantly associated with the outcome in the first stage are tested for association
with other omic layers: the SNPs associated with gene expression levels are
called expression quantitative trait loci (eQTL); metabolite QTLs (mQTL) and
protein QTLs (pQTL) can be similarly defined. Lastly, omic data retained in
the second stage are used for association with the outcome in the third stage.
Similar approaches could potentially be used to associate microbial MG data
with MT, MP, ME data and outcomes of interest. Variations of this method
where associations of other omic-layers are tested in stage one and the genomic
associations are tested in later stages have also been proposed.

Contents of this section were created by Iñaki Odriozola and Antton Alberdi.
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Chapter 25

Meta-dimensional omics
integration

In meta-dimensional analysis all omic datasets are analysed in a single, si-
multaneous analysis. This kind of approach typically avoids using domain
knowledge-based procedures to independently reduce features in single omic
datasets, and aims at integrating multi-omic datasets in their whole complexity.
Meta-dimensional integration methods can be grouped following several crite-
ria but here we briefly summarise the classification first coined by Ritchie et
al. (2015) [Ritchie et al., 2015] and recently reviewed by Reel et al. (2021) [Reel
et al., 2021] (we refer interested readers to those publications for a more in depth
treatment of the topic), which classifies the methods into concatenation-based,
model-based and transformation-based integration methods. The three kinds
of integration methods can be used for unsupervised and supervised analysis of
multi-omic data, including classification and regression tasks.

• Concatenation-based integration
• Transformation-based integration
• Model-based integration

Contents of this section were created by Iñaki Odriozola and Antton Alberdi.

25.1 Concatenation-based integration
Concatenation-based integration combines multiple omic datasets, raw or pre-
processed, into a single large matrix. One of the advantages of these ap-
proaches is their simplicity, since once the concatenation of multi-omic datasets
is achieved, unsupervised and supervised analysis methods can be applied to
the joint matrix, as in the case of the independent analysis of omic layers.
Concatenation-based techniques offer a straightforward approach to utilising
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machine learning for the examination of both continuous and categorical data.
Once the individual omics are concatenated, these methods can analyse all the
combined features in an even-handed manner and pinpoint the most distinguish-
ing features associated with a given phenotype. One of the main challenges of
concatenation-based approaches is to ensure that the features of the different
omic layers are comparable.

Several examples of unsupervised concatenation-based methods for multi-omic
integration have been developed in recent years, most of them based on matrix-
factorisation [Reel et al., 2021]. Joint non-negative matrix factorisation (Joint
NMF) allowed integrating non-negative multi-omic data by decomposing the
joint matrix into factors and loadings [Zhang et al., 2021]. Joint and Individual
Variation Explained (JIVE) is an adaptation of NMF framework [Lock et al.,
2013] which was later improved by Joint Bayes Factor (JBF) to handle the
problems derived from the high sparsity of multi-omic datasets [Ray et al., 2014].
iCluster framework is based in similar principles to NMF but allows integration
of datasets having negative values [Shen et al., 2009]. MoCluster [Meng et al.,
2016], RLAcluster [Wu et al., 2015] and iClusterBayes [Mo et al., 2018] have
further developed the framework and improved it in terms of diversity of handled
data types, computation speed and clustering accuracy. Multi-Omics Factor
Analysis (MOFA) is another recent development that allows discovering the
principal sources of variability across different omic datasets [Argelaguet et al.,
2018]. Regarding supervised analyses, any of the algorithms for supervised
analysis of single omic layers can be used to analyse concatenated multi omic
data. RF [Acharjee et al., 2016], SVM [Li et al., 2017], LASSO regression [Lee
et al., 2017] or DL [Zhang et al., 2018] algorithms have been used, among others,
for concatenation-based supervised analysis in multi-omic literature.

Contents of this section were created by Iñaki Odriozola and Antton Alberdi.

25.2 Transformation-based integration
In transformation-based integration, omic datasets are first transformed into an
intermediate representation, typically a graph or a kernel matrix, and they are
then merged before building the final model. This approach preserves the spe-
cific properties of each omic layer if they are transformed into appropriate inter-
mediate representations, and a wide range of omic data can be combined as long
as they share a unique identifier (i.e. a sample ID). Graph-based analyses have
the advantage of easier interpretability and lower computational requirements
whereas, overall, kernel-based methods provide higher predictive performance
[Yan et al., 2017].

There are several methods available for transformation-based unsupervised anal-
ysis. Regularised Multiple Kernel Learning for Locality Preserving Projections
(rMKL-LPP) [Speicher and Pfeifer, 2015] and PAMOGK [Tepeli et al., 2021]
are examples of kernel- and graph-based methods that can be used for cluster-
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ing. Meta-analytic SVM (Meta-SVM) [Kim et al., 2017] and NEighborhood
based Multi-Omics clustering (NEMO) [Rappoport and Shamir, 2019] are other
methods available for transformation-based unsupervised analysis. Most of the
methods for transformation-based supervised analysis are kernel- or graph-based
algorithms [Reel et al., 2021, Yan et al. [2017]]. The kernel-based integration
approaches include Semi-Definite Programming SVM (SDP-SVM) [Lanckriet
et al., 2004], Multiple Kernel Learning with Feature Selection (FSMKL) [Seoane
et al., 2014], Relevance Vector Machine (RVM) [Tipping, 2001] and Ada-boost
RVM [Wu et al., 2010]. The graph-based integration approaches include graph-
based semi-supervised learning (included in supervised analyses following Reel
et al. 2021 [Reel et al., 2021]) [Kim et al., 2015], graph sharpening [Shin et al.,
2010] and composite network [Mostafavi and Morris, 2010]. Graph-based anal-
yses have the advantage of easier interpretability and lower computational re-
quirements whereas, overall, kernel-based methods provide higher predictive
performance [Yan et al., 2017]. However, see Multi-Omics Graph Convolutional
Networks (MOGONET) [Wang et al., 2021] for a high performing graph-based
classification method.

Contents of this section were created by Iñaki Odriozola and Antton Alberdi.

25.3 Model-based integration
Model-based integration builds intermediate models from each omic layer and
then builds a final model combining all intermediate models. An advantage of
this approach is that it allows merging multiple omic types that have been col-
lected in different sets of sampling units, if the outcome of interest is the same
across datasets (e.g. specific disease). On the other hand, since the models
are first built independently for different omic layers, these methods may fail
to capture interactions between features belonging to different omic datasets,
i.e. if there are two features belonging to different omic layers that affect the
outcome, but only through their interaction and not when evaluated indepen-
dently. Therefore, the model-based integration is particularly suitable when
the different omic datasets are extremely heterogeneous (even collected from
different samples), and concatenating or transforming them to a common inter-
mediate form is not possible.

Model-based unsupervised integration methods include Format Concept Anal-
ysis (FCA) consensus clustering [Hristoskova et al., 2014], Bayesian consensus
clustering (BCC) [Lock and Dunson, 2013] or Perturbation Clustering for Data
Integration and Disease Subtyping (PINS+) [Nguyen et al., 2019]. Network-
based methods such as Lemon Tree [Bonnet et al., 2015] or Similarity Network
Fusion (SNF) [Wang et al., 2014] are also available for association analysis.
Model-based supervised integration can use a variety of frameworks for model
development, including majority-based voting [Drăghici and Potter, 2003], hier-
archical classifiers [Bavafaye Haghighi et al., 2019], ensemble-based approaches
such as XGBoost [Ma et al., 2020] or DL methods [Poirion et al., 2020]. Multi-
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omic data integration efforts such as ATHENA (Analysis Tool for Heritable
and Environmental Network Associations) [Holzinger et al., 2014] or MOSAE
(Multi-omics Supervised Autoencoder) [Tan et al., 2020] use model-based inte-
gration for disease prediction by combining a variety of modelling frameworks
and algorithms.

Contents of this section were created by Iñaki Odriozola and Antton Alberdi.
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Chapter 26

Useful links

Data access
Host reference genomes

• NCBI Genome (website):
• Ensembl (website):
• Vertebrates Genome Project (website):

Metagenomic data

• HoloFood Data Portal (website):
• MGnify (website):
• Earth Hologenome Initiative (website):

Documentation
Genomics

• Data Wrangling and Processing for Genomics (website):
• Vertebrate Genomes Project assembly pipeline tutorial (web-

site):

Shell command line usage

• Introduction to the Command Line for Genomics (website): gen-
eral overview of basic command line usage.

R usage (General usage and programming)

• Intro to R and RStudio for Genomics (website):
• Efficient R programming (website): best practices for programming

in R.
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https://www.ncbi.nlm.nih.gov/genome/
https://www.ensembl.org/index.html
https://vertebrategenomesproject.org/
https://www.holofooddata.org/
https://www.ebi.ac.uk/metagenomics/
http://www.earthhologenome.org/database.html
https://datacarpentry.org/wrangling-genomics/
https://training.galaxyproject.org/training-material/topics/assembly/tutorials/vgp_genome_assembly/tutorial.html
https://datacarpentry.org/shell-genomics/
https://datacarpentry.org/genomics-r-intro/
https://csgillespie.github.io/efficientR/index.html
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R usage (Graphics and visualisation)

• Fundamentals of Data Visualization (website): guide to making
visualisations that accurately reflect the data, tell a story, and look pro-
fessional.

• R Graphics Cookbook (website): a practical guide that provides more
than 150 recipes to generate high-quality graphs using ggplot2.

Statistics

• An Introduction to Statistical Learning (book): freely available
book about general statistical learning covering regression and classifica-
tion problems through linear modelling and machine learning.

• High dimensional statistics with R (website): virtual lesson spe-
cialised in dealing with high dimensional data.

https://clauswilke.com/dataviz/
https://r-graphics.org/index.html
https://www.statlearning.com/
https://carpentries-incubator.github.io/high-dimensional-stats-r/


Chapter 27

References

137



138 CHAPTER 27. REFERENCES



Bibliography

Animesh Acharjee, Bjorn Kloosterman, Richard G F Visser, and Chris
Maliepaard. Integration of multi-omics data for prediction of phenotypic
traits using random forest. BMC Bioinformatics, 17 Suppl 5(Suppl 5):180,
June 2016.

Antton Alberdi, Sandra B Andersen, Morten T Limborg, Robert R Dunn, and
M Thomas P Gilbert. Disentangling host-microbiota complexity through
hologenomics. Nat. Rev. Genet., 23(5):281–297, May 2022.

Ricard Argelaguet, Britta Velten, Damien Arnol, Sascha Dietrich, Thorsten
Zenz, John C Marioni, Florian Buettner, Wolfgang Huber, and Oliver Ste-
gle. Multi-Omics factor analysis—a framework for unsupervised integration
of multi-omics data sets. Mol. Syst. Biol., 14(6):e8124, 2018.

Gustavo Barcelos Barra, Ticiane Henriques Santa Rita, Júlia
de Almeida Vasques, Camilla Figueiredo Chianca, Lídia Freire Abdalla
Nery, and Sandra Santana Soares Costa. EDTA-mediated inhibition of
DNases protects circulating cell-free DNA from ex vivo degradation in blood
samples. Clin. Biochem., 48(15):976–981, October 2015.

Elham Bavafaye Haghighi, Michael Knudsen, Britt Elmedal Laursen, and Søren
Besenbacher. Hierarchical classification of cancers of unknown primary using
Multi-Omics data. Cancer Inform., 18:1176935119872163, August 2019.

Rie Dybboe Bjerre, Luisa Warchavchik Hugerth, Fredrik Boulund, Maike Seifert,
Jeanne Duus Johansen, and Lars Engstrand. Effects of sampling strategy and
DNA extraction on human skin microbiome investigations. Sci. Rep., 9(1):
17287, November 2019.

Amanda Bolt Botnen, Mads Bjørn Bjørnsen, Antton Alberdi, M Thomas P
Gilbert, and Ostaizka Aizpurua. A simplified protocol for DNA extraction
from FTA cards for faecal microbiome studies. Heliyon, (e12861):e12861,
January 2023.

Eric Bonnet, Laurence Calzone, and Tom Michoel. Integrative multi-omics mod-
ule network inference with Lemon-Tree. PLoS Comput. Biol., 11(2):e1003983,
February 2015.

139



140 BIBLIOGRAPHY

Robert M Bowers, Nikos C Kyrpides, Ramunas Stepanauskas, Miranda Harmon-
Smith, Devin Doud, T B K Reddy, Frederik Schulz, Jessica Jarett, Adam R
Rivers, Emiley A Eloe-Fadrosh, Susannah G Tringe, Natalia N Ivanova, Alex
Copeland, Alicia Clum, Eric D Becraft, Rex R Malmstrom, Bruce Birren,
Mircea Podar, Peer Bork, George M Weinstock, George M Garrity, Jeremy A
Dodsworth, Shibu Yooseph, Granger Sutton, Frank O Glöckner, Jack A
Gilbert, William C Nelson, Steven J Hallam, Sean P Jungbluth, Thijs J G
Ettema, Scott Tighe, Konstantinos T Konstantinidis, Wen-Tso Liu, Brett J
Baker, Thomas Rattei, Jonathan A Eisen, Brian Hedlund, Katherine D
McMahon, Noah Fierer, Rob Knight, Rob Finn, Guy Cochrane, Ilene Karsch-
Mizrachi, Gene W Tyson, Christian Rinke, Genome Standards Consortium,
Alla Lapidus, Folker Meyer, Pelin Yilmaz, Donovan H Parks, A M Eren, Lynn
Schriml, Jillian F Banfield, Philip Hugenholtz, and Tanja Woyke. Minimum
information about a single amplified genome (MISAG) and a metagenome-
assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol., 35
(8):725–731, August 2017.

Pierre-Alain Chaumeil, Aaron J Mussig, Philip Hugenholtz, and Donovan H
Parks. GTDB-Tk v2: memory friendly classification with the genome taxon-
omy database. Bioinformatics, 38(23):5315–5316, November 2022.

Haoyu Cheng, Gregory T Concepcion, Xiaowen Feng, Haowen Zhang, and Heng
Li. Haplotype-resolved de novo assembly using phased assembly graphs with
hifiasm. Nat. Methods, 18(2):170–175, February 2021.

Leah Cuthbertson, Geraint B Rogers, Alan W Walker, Anna Oliver, Lucas R
Hoffman, Mary P Carroll, Julian Parkhill, Kenneth D Bruce, and Christo-
pher J van der Gast. Implications of multiple freeze-thawing on respiratory
samples for culture-independent analyses. J. Cyst. Fibros., 14(4):464–467,
July 2015.

Margot De Spiegeleer, Marilyn De Graeve, Steve Huysman, Arno Vanderbeke,
Lieven Van Meulebroek, and Lynn Vanhaecke. Impact of storage conditions
on the human stool metabolome and lipidome: Preserving the most accurate
fingerprint. Anal. Chim. Acta, 1108:79–88, April 2020.

Sorin Drăghici and R Brian Potter. Predicting HIV drug resistance with neural
networks. Bioinformatics, 19(1):98–107, January 2003.

A Murat Eren, Özcan C Esen, Christopher Quince, Joseph H Vineis, Hilary G
Morrison, Mitchell L Sogin, and Tom O Delmont. Anvi’o: an advanced analy-
sis and visualization platform for ’omics data. PeerJ, 3:e1319, October 2015.

Jacob T Evans and Vincent J Denef. To dereplicate or not to dereplicate?
mSphere, 5(3), May 2020.

Kristýna Fiedorová, Matěj Radvanský, Eva Němcová, Hana Grombiříková, Ju-
raj Bosák, Michaela Černochová, Matej Lexa, David Šmajs, and Tomáš
Freiberger. The impact of DNA extraction methods on stool bacterial and
fungal microbiota community recovery. Front. Microbiol., 10:821, April 2019.



BIBLIOGRAPHY 141

Caleb N Fischer, Eric P Trautman, Jason M Crawford, Eric V Stabb, Jo Han-
delsman, and Nichole A Broderick. Metabolite exchange between microbiome
members produces compounds that influence drosophila behavior. Elife, 6,
January 2017.

Viacheslav Y Fofanov, Tara N Furstenau, Daniel Sanchez, Crystal M Hepp, Jill
Cocking, Colin Sobek, Nicole Pagel, Faith Walker, and Carol L Chambers.
Guano exposed: Impact of aerobic conditions on bat fecal microbiota. Ecol.
Evol., 8(11):5563–5574, June 2018.

Tyler W Griffin, Julia G Baer, and J Evan Ward. Direct comparison of fecal and
gut microbiota in the blue mussel (mytilus edulis) discourages fecal sampling
as a proxy for resident gut community. Microb. Ecol., 81(1):180–192, January
2021.

W Gu, E D Crawford, B D O’Donovan, M R Wilson, E D Chow, H Retallack,
and J L DeRisi. Depletion of abundant sequences by hybridization (DASH):
using cas9 to remove unwanted high-abundance species in sequencing libraries
and molecular counting applications. Genome Biol., 17:41, March 2016.

Jason B Hedges, Siavash Vahidi, Xuanfeng Yue, and Lars Konermann. Effects of
ammonium bicarbonate on the electrospray mass spectra of proteins: evidence
for bubble-induced unfolding. Anal. Chem., 85(13):6469–6476, July 2013.

Emily R Holzinger, Scott M Dudek, Alex T Frase, Sarah A Pendergrass, and
Marylyn D Ritchie. ATHENA: the analysis tool for heritable and environ-
mental network associations. Bioinformatics, 30(5):698–705, March 2014.

Anna Hristoskova, Veselka Boeva, and Elena Tsiporkova. A formal concept
analysis approach to consensus clustering of multi-experiment expression data.
BMC Bioinformatics, 15:151, May 2014.

Yiming Huang, Ravi U Sheth, Andrew Kaufman, and Harris H Wang. Scalable
and cost-effective ribonuclease-based rRNA depletion for transcriptomics. Nu-
cleic Acids Res., 48(4):e20, February 2020.

Brian W Ji, Ravi U Sheth, Purushottam D Dixit, Yiming Huang, Andrew Kauf-
man, Harris H Wang, and Dennis Vitkup. Quantifying spatiotemporal vari-
ability and noise in absolute microbiota abundances using replicate sampling.
Nat. Methods, 16(8):731–736, August 2019.

Marcus B Jones, Sarah K Highlander, Ericka L Anderson, Weizhong Li, Mark
Dayrit, Niels Klitgord, Martin M Fabani, Victor Seguritan, Jessica Green,
David T Pride, Shibu Yooseph, William Biggs, Karen E Nelson, and J Craig
Venter. Library preparation methodology can influence genomic and func-
tional predictions in human microbiome research. Proc. Natl. Acad. Sci. U.
S. A., 112(45):14024–14029, November 2015.

Dokyoon Kim, Je-Gun Joung, Kyung-Ah Sohn, Hyunjung Shin, Yu Rang Park,
Marylyn D Ritchie, and Ju Han Kim. Knowledge boosting: a graph-based



142 BIBLIOGRAPHY

integration approach with multi-omics data and genomic knowledge for can-
cer clinical outcome prediction. J. Am. Med. Inform. Assoc., 22(1):109–120,
January 2015.

Sunghwan Kim, Jae-Hwan Jhong, Jungjun Lee, and Ja-Yong Koo. Erratum
to: Meta-analytic support vector machine for integrating multiple omics data.
BioData Min., 10:8, February 2017.

Martin Kircher, Susanna Sawyer, and Matthias Meyer. Double indexing over-
comes inaccuracies in multiplex sequencing on the illumina platform. Nucleic
Acids Res., 40(1):e3, January 2012.

Teemu Kivioja, Anna Vähärautio, Kasper Karlsson, Martin Bonke, Martin
Enge, Sten Linnarsson, and Jussi Taipale. Counting absolute numbers
of molecules using unique molecular identifiers. Nat. Methods, 9(1):72–74,
November 2011.

Amelie J Kraus, Benedikt G Brink, and T Nicolai Siegel. Efficient and specific
oligo-based depletion of rRNA. Sci. Rep., 9(1):12281, August 2019.

Gert R G Lanckriet, Tijl De Bie, Nello Cristianini, Michael I Jordan, and
William Stafford Noble. A statistical framework for genomic data fusion.
Bioinformatics, 20(16):2626–2635, November 2004.

Garam Lee, Lisa Bang, So Yeon Kim, Dokyoon Kim, and Kyung-Ah Sohn.
Identifying subtype-specific associations between gene expression and DNA
methylation profiles in breast cancer. BMC Med. Genomics, 10(Suppl 1):28,
May 2017.

Sung-Gwon Lee, Dokyun Na, and Chungoo Park. Comparability of reference-
based and reference-free transcriptome analysis approaches at the gene ex-
pression level. BMC Bioinformatics, 22(Suppl 11):310, October 2021.

Simin Li, Xiujie Chen, Xiangqiong Liu, Yang Yu, Hongying Pan, Rainer Haak,
Jana Schmidt, Dirk Ziebolz, and Gerhard Schmalz. Complex integrated analy-
sis of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma. Oral Oncol.,
73:1–9, October 2017.

Morten T Limborg, Antton Alberdi, Miyako Kodama, Michael Roggenbuck,
Karsten Kristiansen, and M Thomas P Gilbert. Applied hologenomics: Feasi-
bility and potential in aquaculture. Trends Biotechnol., 36(3):252–264, March
2018.

Eric F Lock and David B Dunson. Bayesian consensus clustering. Bioinformat-
ics, 29(20):2610–2616, October 2013.

Eric F Lock, Katherine A Hoadley, J S Marron, and Andrew B Nobel.
JOINT AND INDIVIDUAL VARIATION EXPLAINED (JIVE) FOR INTE-
GRATED ANALYSIS OF MULTIPLE DATA TYPES. Ann. Appl. Stat., 7
(1):523–542, March 2013.



BIBLIOGRAPHY 143

Anjun Ma, Adam McDermaid, Jennifer Xu, Yuzhou Chang, and Qin Ma. Inte-
grative methods and practical challenges for Single-Cell multi-omics. Trends
Biotechnol., 38(9):1007–1022, September 2020.

Chen Meng, Dominic Helm, Martin Frejno, and Bernhard Kuster. mocluster:
Identifying joint patterns across multiple omics data sets. J. Proteome Res.,
15(3):755–765, March 2016.

Qianxing Mo, Ronglai Shen, Cui Guo, Marina Vannucci, Keith S Chan, and
Susan G Hilsenbeck. A fully bayesian latent variable model for integrative
clustering analysis of multi-type omics data. Biostatistics, 19(1):71–86, Jan-
uary 2018.

Sara Mostafavi and Quaid Morris. Fast integration of heterogeneous data
sources for predicting gene function with limited annotation. Bioinformat-
ics, 26(14):1759–1765, July 2010.

Alexandra A Mushegian, Roberto Arbore, Jean-Claude Walser, and Dieter
Ebert. Environmental sources of bacteria and genetic variation in behav-
ior influence Host-Associated microbiota. Appl. Environ. Microbiol., 85(8),
April 2019.

Hung Nguyen, Sangam Shrestha, Sorin Draghici, and Tin Nguyen. PINSPlus: a
tool for tumor subtype discovery in integrated genomic data. Bioinformatics,
35(16):2843–2846, August 2019.

Lasse Nyholm, Adam Koziol, Sofia Marcos, Amanda Bolt Botnen, Ostaizka
Aizpurua, Shyam Gopalakrishnan, Morten T Limborg, M Thomas P Gilbert,
and Antton Alberdi. Holo-Omics: Integrated Host-Microbiota multi-omics for
basic and applied biological research. iScience, 23(8):101414, August 2020.

Matthew R Olm, Christopher T Brown, Brandon Brooks, and Jillian F Banfield.
drep: a tool for fast and accurate genomic comparisons that enables improved
genome recovery from metagenomes through de-replication. ISME J., 11(12):
2864–2868, December 2017.

Askarbek Orakov, Anthony Fullam, Luis Pedro Coelho, Supriya Khedkar,
Damian Szklarczyk, Daniel R Mende, Thomas S B Schmidt, and Peer Bork.
GUNC: detection of chimerism and contamination in prokaryotic genomes.
Genome Biol., 22(1):178, June 2021.

Donovan H Parks, Maria Chuvochina, Christian Rinke, Aaron J Mussig, Pierre-
Alain Chaumeil, and Philip Hugenholtz. GTDB: an ongoing census of bac-
terial and archaeal diversity through a phylogenetically consistent, rank nor-
malized and complete genome-based taxonomy. Nucleic Acids Res., 50(D1):
D785–D794, January 2022.

Marcos Pérez-Losada, Keith A Crandall, and Robert J Freishtat. Two sampling
methods yield distinct microbial signatures in the nasopharynges of asthmatic
children. Microbiome, 4(1):25, June 2016.



144 BIBLIOGRAPHY

O B Poirion, K Chaudhary, S Huang, and L X Garmire. Multi-omics-based pan-
cancer prognosis prediction using an ensemble of deep-learning and machine-
learning models. medRxiv, 2020.

Gianluca Prezza, Tobias Heckel, Sascha Dietrich, Christina Homberger, Alexan-
der J Westermann, and Jörg Vogel. Improved bacterial RNA-seq by cas9-
based depletion of ribosomal RNA reads. RNA, 26(8):1069–1078, August
2020.

David Probandt, Thilo Eickhorst, Andreas Ellrott, Rudolf Amann, and Katrin
Knittel. Microbial life on a sand grain: from bulk sediment to single grains.
ISME J., 12(2):623–633, February 2018.

R Development Core Team. R: a language and environment for statistical
computing. Vienna, Austria, 2008.

T Rhyker Ranallo-Benavidez, Kamil S Jaron, and Michael C Schatz.
GenomeScope 2.0 and smudgeplot for reference-free profiling of polyploid
genomes. Nat. Commun., 11(1):1432, March 2020.

Nimrod Rappoport and Ron Shamir. NEMO: cancer subtyping by integration of
partial multi-omic data. Bioinformatics, 35(18):3348–3356, September 2019.

Priyadip Ray, Lingling Zheng, Joseph Lucas, and Lawrence Carin. Bayesian
joint analysis of heterogeneous genomics data. Bioinformatics, 30(10):1370–
1376, May 2014.

Parminder S Reel, Smarti Reel, Ewan Pearson, Emanuele Trucco, and Emily
Jefferson. Using machine learning approaches for multi-omics data analysis:
A review. Biotechnol. Adv., 49:107739, July 2021.

Arang Rhie, Brian P Walenz, Sergey Koren, and Adam M Phillippy. Merqury:
reference-free quality, completeness, and phasing assessment for genome as-
semblies. Genome Biol., 21(1):245, September 2020.

Arang Rhie, Shane A McCarthy, Olivier Fedrigo, Joana Damas, Giulio For-
menti, Sergey Koren, Marcela Uliano-Silva, William Chow, Arkarachai Fung-
tammasan, Juwan Kim, Chul Lee, Byung June Ko, Mark Chaisson, Gregory L
Gedman, Lindsey J Cantin, Francoise Thibaud-Nissen, Leanne Haggerty, Il-
iana Bista, Michelle Smith, Bettina Haase, Jacquelyn Mountcastle, Sylke
Winkler, Sadye Paez, Jason Howard, Sonja C Vernes, Tanya M Lama, Frank
Grutzner, Wesley C Warren, Christopher N Balakrishnan, Dave Burt, Julia M
George, Matthew T Biegler, David Iorns, Andrew Digby, Daryl Eason, Bruce
Robertson, Taylor Edwards, Mark Wilkinson, George Turner, Axel Meyer,
Andreas F Kautt, Paolo Franchini, H William Detrich, 3rd, Hannes Svardal,
Maximilian Wagner, Gavin J P Naylor, Martin Pippel, Milan Malinsky, Mark
Mooney, Maria Simbirsky, Brett T Hannigan, Trevor Pesout, Marlys Houck,
Ann Misuraca, Sarah B Kingan, Richard Hall, Zev Kronenberg, Ivan Sović,
Christopher Dunn, Zemin Ning, Alex Hastie, Joyce Lee, Siddarth Selvaraj,



BIBLIOGRAPHY 145

Richard E Green, Nicholas H Putnam, Ivo Gut, Jay Ghurye, Erik Garri-
son, Ying Sims, Joanna Collins, Sarah Pelan, James Torrance, Alan Tracey,
Jonathan Wood, Robel E Dagnew, Dengfeng Guan, Sarah E London, David F
Clayton, Claudio V Mello, Samantha R Friedrich, Peter V Lovell, Ekaterina
Osipova, Farooq O Al-Ajli, Simona Secomandi, Heebal Kim, Constantina
Theofanopoulou, Michael Hiller, Yang Zhou, Robert S Harris, Kateryna D
Makova, Paul Medvedev, Jinna Hoffman, Patrick Masterson, Karen Clark,
Fergal Martin, Kevin Howe, Paul Flicek, Brian P Walenz, Woori Kwak, Hiram
Clawson, Mark Diekhans, Luis Nassar, Benedict Paten, Robert H S Kraus,
Andrew J Crawford, M Thomas P Gilbert, Guojie Zhang, Byrappa Venkatesh,
Robert W Murphy, Klaus-Peter Koepfli, Beth Shapiro, Warren E Johnson,
Federica Di Palma, Tomas Marques-Bonet, Emma C Teeling, Tandy Warnow,
Jennifer Marshall Graves, Oliver A Ryder, David Haussler, Stephen J O’Brien,
Jonas Korlach, Harris A Lewin, Kerstin Howe, Eugene W Myers, Richard
Durbin, Adam M Phillippy, and Erich D Jarvis. Towards complete and error-
free genome assemblies of all vertebrate species. Nature, 592(7856):737–746,
April 2021.

Marylyn D Ritchie, Emily R Holzinger, Ruowang Li, Sarah A Pendergrass, and
Dokyoon Kim. Methods of integrating data to uncover genotype–phenotype
interactions. Nat. Rev. Genet., 16(2):85–97, January 2015.

Eugene Rosenberg and Ilana Zilber-Rosenberg. The Hologenome Concept: Hu-
man, Animal and Plant Microbiota. Springer, Cham, 2013.

Barry J Ryan and Gary T Henehan. Avoiding proteolysis during protein purifi-
cation. Methods Mol. Biol., 1485:53–69, 2017.

Andreas Schroeder, Odilo Mueller, Susanne Stocker, Ruediger Salowsky,
Michael Leiber, Marcus Gassmann, Samar Lightfoot, Wolfram Menzel, Mar-
tin Granzow, and Thomas Ragg. The RIN: an RNA integrity number for
assigning integrity values to RNA measurements. BMC Mol. Biol., 7:3, Jan-
uary 2006.

Andrew J Schweighardt, Courtney M Tate, Kristina A Scott, Kathryn A Harper,
and James M Robertson. Evaluation of commercial kits for dual extraction
of DNA and RNA from human body fluids. J. Forensic Sci., 60(1):157–165,
January 2015.

José A Seoane, Ian N M Day, Tom R Gaunt, and Colin Campbell. A pathway-
based data integration framework for prediction of disease progression. Bioin-
formatics, 30(6):838–845, March 2014.

Michael Shaffer, Mikayla A Borton, Bridget B McGivern, Ahmed A Zayed,
Sabina Leanti La Rosa, Lindsey M Solden, Pengfei Liu, Adrienne B Narrowe,
Josué Rodríguez-Ramos, Benjamin Bolduc, M Consuelo Gazitúa, Rebecca A
Daly, Garrett J Smith, Dean R Vik, Phil B Pope, Matthew B Sullivan, Simon
Roux, and Kelly C Wrighton. DRAM for distilling microbial metabolism to



146 BIBLIOGRAPHY

automate the curation of microbiome function. Nucleic Acids Res., 48(16):
8883–8900, September 2020.

Ronglai Shen, Adam B Olshen, and Marc Ladanyi. Integrative clustering of
multiple genomic data types using a joint latent variable model with appli-
cation to breast and lung cancer subtype analysis. Bioinformatics, 25(22):
2906–2912, November 2009.

Hyunjung Shin, N Jeremy Hill, Andreas Martin Lisewski, and Joon-Sang Park.
Graph sharpening. Expert Syst. Appl., 37(12):7870–7879, December 2010.

Christian M K Sieber, Alexander J Probst, Allison Sharrar, Brian C Thomas,
Matthias Hess, Susannah G Tringe, and Jillian F Banfield. Recovery of
genomes from metagenomes via a dereplication, aggregation and scoring strat-
egy. Nat Microbiol, 3(7):836–843, July 2018.

Felipe A Simão, Robert M Waterhouse, Panagiotis Ioannidis, Evgenia V Krivent-
seva, and Evgeny M Zdobnov. BUSCO: assessing genome assembly and an-
notation completeness with single-copy orthologs. Bioinformatics, 31(19):
3210–3212, October 2015.

André E S Simões, Diane M Pereira, Joana D Amaral, Ana F Nunes, Sofia E
Gomes, Pedro M Rodrigues, Adrian C Lo, Rudi D’Hooge, Clifford J Steer,
Stephen N Thibodeau, Pedro M Borralho, and Cecília M P Rodrigues. Ef-
ficient recovery of proteins from multiple source samples after trizol® or tri-
zol®LS RNA extraction and long-term storage. BMC Genomics, 14(1):1–15,
March 2013.

Nora K Speicher and Nico Pfeifer. Integrating different data types by regular-
ized unsupervised multiple kernel learning with application to cancer subtype
discovery. Bioinformatics, 31(12):i268–75, June 2015.

Jennifer K Straughen, Alexandra R Sitarik, A Daniel Jones, Jia Li, Ghas-
san Allo, Carolyn Salafia, Andrea E Cassidy-Bushrow, and Nigel Paneth.
Comparison of methanol fixation versus cryopreservation of the placenta for
metabolomics analysis. Sci. Rep., 13(1):4063, March 2023.

Kaiwen Tan, Weixian Huang, Jinlong Hu, and Shoubin Dong. A multi-omics
supervised autoencoder for pan-cancer clinical outcome endpoints prediction.
BMC Med. Inform. Decis. Mak., 20(Suppl 3):129, July 2020.

Yasuhiro Tanizawa, Takatomo Fujisawa, and Yasukazu Nakamura. DFAST: a
flexible prokaryotic genome annotation pipeline for faster genome publication.
Bioinformatics, 34(6):1037–1039, November 2017.

Yasin Ilkagan Tepeli, Ali Burak Ünal, Furkan Mustafa Akdemir, and Oznur
Tastan. PAMOGK: a pathway graph kernel-based multiomics approach for
patient clustering. Bioinformatics, 36(21):5237–5246, January 2021.

Kevin R Theis, Nolwenn M Dheilly, Jonathan L Klassen, Robert M Brucker,
John F Baines, Thomas C G Bosch, John F Cryan, Scott F Gilbert, Charles J



BIBLIOGRAPHY 147

Goodnight, Elisabeth A Lloyd, Jan Sapp, Philippe Vandenkoornhuyse, Ilana
Zilber-Rosenberg, Eugene Rosenberg, and Seth R Bordenstein. Getting the
hologenome concept right: an Eco-Evolutionary framework for hosts and their
microbiomes. mSystems, 1(2), March 2016.

Michael E Tipping. Sparse bayesian learning and the relevance vector
machine. https://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf?
ref=https://githubhelp.com, 2001. Accessed: 2023-4-18.

Gherman V Uritskiy, Jocelyne DiRuggiero, and James Taylor. MetaWRAP—a
flexible pipeline for genome-resolved metagenomic data analysis. Microbiome,
6(1):1–13, September 2018.

Rudy G E van Eijsden, Catherine Stassen, Luk Daenen, Sebastiaan E Van Mul-
ders, Prashant M Bapat, Verena Siewers, Katty V Y Goossens, Jens Nielsen,
Freddy R Delvaux, Paul Van Hummelen, Bart Devreese, and Ronnie G
Willaert. A universal fixation method based on quaternary ammonium salts
(RNAlater) for omics-technologies: Saccharomyces cerevisiae as a case study.
Biotechnol. Lett., 35(6):891–900, June 2013.

Bo Wang, Aziz M Mezlini, Feyyaz Demir, Marc Fiume, Zhuowen Tu, Michael
Brudno, Benjamin Haibe-Kains, and Anna Goldenberg. Similarity network
fusion for aggregating data types on a genomic scale. Nat. Methods, 11(3):
333–337, March 2014.

Hengchao Wang, Bo Liu, Yan Zhang, Fan Jiang, Yuwei Ren, Lijuan Yin, Hang-
wei Liu, Sen Wang, and Wei Fan. Estimation of genome size using k-mer
frequencies from corrected long reads. March 2020.

Tongxin Wang, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding,
and Kun Huang. MOGONET integrates multi-omics data using graph convo-
lutional networks allowing patient classification and biomarker identification.
Nat. Commun., 12(1):3445, June 2021.

Zheng Wang, Christine P Zolnik, Yunping Qiu, Mykhaylo Usyk, Tao Wang,
Howard D Strickler, Carmen R Isasi, Robert C Kaplan, Irwin J Kurland,
Qibin Qi, and Robert D Burk. Comparison of fecal collection methods for
microbiome and metabolomics studies. Front. Cell. Infect. Microbiol., 8:301,
August 2018.

Lisa Weidner, Sandra Laner-Plamberger, David Horner, Charlotte Pistorius,
Jennifer Jurkin, Michael Karbiener, Elisabeth Schistal, Thomas R Kreil, and
Christof Jungbauer. Sample buffer containing Guanidine-Hydrochloride com-
bines biological safety and RNA preservation for SARS-CoV-2 molecular di-
agnostics. Diagnostics (Basel), 12(5), May 2022.

Chia-Chin Wu, Shahab Asgharzadeh, Timothy J Triche, and David Z D’Argenio.
Prediction of human functional genetic networks from heterogeneous data
using RVM-based ensemble learning. Bioinformatics, 26(6):807–813, March
2010.

https://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf?ref=https://githubhelp.com
https://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf?ref=https://githubhelp.com


148 BIBLIOGRAPHY

Dingming Wu, Dongfang Wang, Michael Q Zhang, and Jin Gu. Fast dimension
reduction and integrative clustering of multi-omics data using low-rank ap-
proximation: application to cancer molecular classification. BMC Genomics,
16:1022, December 2015.

Hsin-Jung Wu and Eric Wu. The role of gut microbiota in immune homeostasis
and autoimmunity. Gut Microbes, 3(1):4–14, January 2012.

Kang K Yan, Hongyu Zhao, and Herbert Pang. A comparison of graph- and
kernel-based –omics data integration algorithms for classifying complex traits.
BMC Bioinformatics, 18(1), December 2017.

Wei Yan, Congjiao Sun, Jiangxia Zheng, Chaoliang Wen, Congliang Ji, Dexiang
Zhang, Yonghua Chen, Zhuocheng Hou, and Ning Yang. Efficacy of fecal sam-
pling as a gut proxy in the study of chicken gut microbiota. Front. Microbiol.,
10:2126, 2019.

Bo Zhang, Matthew Brock, Carlos Arana, Chaitanya Dende, Nicolai Stanislas
van Oers, Lora V Hooper, and Prithvi Raj. Impact of Bead-Beating inten-
sity on the genus- and Species-Level characterization of the gut microbiome
using amplicon and complete 16S rRNA gene sequencing. Front. Cell. Infect.
Microbiol., 11:678522, October 2021.

Li Zhang, Chenkai Lv, Yaqiong Jin, Ganqi Cheng, Yibao Fu, Dongsheng Yuan,
Yiran Tao, Yongli Guo, Xin Ni, and Tieliu Shi. Deep Learning-Based Multi-
Omics data integration reveals two prognostic subtypes in High-Risk neurob-
lastoma. Front. Genet., 9:477, October 2018.


	About this guidebook
	I INTRODUCTION
	Introduction to holo-omics
	Omic layers

	Study design considerations
	Hologenomic complexity
	Control of variables
	Molecular resolution
	Spatiotemporal factors
	Explanatory and response variables


	II FIELD PROCEDURES
	About fieldwork
	Sample collection
	Sample preservation

	III LABORATORY PROCEDURES
	About labwork
	DNA/RNA extraction
	Protein/metabolite extraction
	Sequencing library preparation
	Host genomics and microbial metagenomics
	Host transcriptomics
	Microbial metatranscriptomics


	IV BIOINFORMATIC PROCEDURES
	About bioinformatics
	Prepare your shell environment
	Using snakemake for workflow management

	Sequencing data preprocessing
	Host genomics (HG) data processing
	Host reference genome
	Host genome resequencing

	Microbial metagenomics (MG) data processing
	Reference-based
	Assembly-based
	Genome-resolved

	Host transcriptomics (HT) data processing
	Reference-based host transcriptomics (HT) data processing
	Reference-free host transcriptomics (HT) data processing

	Microbial metatranscriptomics (HT) data processing
	Reference-based microbial metatranscriptomics (MT) data processing
	Reference-free microbial metatranscriptomics (MT) data processing

	Host proteomics (HP) data processing
	Microbial metaproteomics (MP) data processing

	V STATISTICAL PROCEDURES
	About statistics
	Prepare your R environment
	Create / clone a Github repository

	Single omic analyses
	Data transformations
	Transformations to account for statistical assumptions

	Unsupervised exploration
	Cluster analysis
	Dimension reduction and ordination

	Supervised analysis
	Regression methods
	Classification methods

	Multi-omic integration
	Multi-staged omics integration
	Meta-dimensional omics integration
	Concatenation-based integration
	Transformation-based integration
	Model-based integration


	VI RESOURCES
	Useful links
	References


